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� We address the problem of designing a multispecies survey using multistage sampling.

� The multispecies nature of the survey sampling design is based on species richness.
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Abstract

Designing a large-scale multispecies survey presents significant challenges due to its multivariate,
multiscale, and often multiobjective nature. Because it is impractical to measure or observe all variables
of interest at every location in the survey area, spatial sampling is crucial. To ensure a statistically
sound survey, free of assumptions, randomization of the selection of spatial sampling units is required.

In a large-scale survey, minimizing travel costs requires multistage sampling in which nearby sam-
pling units are grouped within higher-level sampling units. The design may be supplemented by one
or more strata systems — possibly nested — that intervene at specific sampling stages. This article
focuses on stratified two-stage sampling that balances statistical efficiency and travel cost minimization.

As presurvey knowledge, we assume that the spatial distribution of the species of interest is available
for the sampled spatial domain, either from a spatial database or a published species distribution atlas.
The multispecies nature of the survey sampling plan relies on these data. The primary sampling units
are defined by the spatial grid resolution of the distribution data, while the presence data are used to
stratify the PSUs to ensure that the sampling effort is concentrated where most species occur.

In this article, we formally define the sampling coverage probability of a species distribution when
the selection of samples is randomized according to a given probability mass function (i.e., a probability
sampling plan or sampling design, in the statistical sense of the term). By maximizing the sampling
coverage probability averaged over the species, the stratification and allocation of spatial sampling
units concentrate observer effort where most species occur and minimize effort elsewhere.

To guide and illustrate our ideas, we present as an example a multispecies waterbird program
at the national scale in European France within the framework of probability sampling from finite
populations.

Keywords:
multispecies surveys, spatial sampling, stratification, multistage sampling, species richness,
design-based framework

1. Introduction1

Large-scale ecological studies face numerous impediments and challenges due to the nature of the2

features under study. They require the measurement or observation of numerous biotic and abiotic3

variables (e.g., Legendre et al., 1989), and because of the changing nature of ecological processes with4

spatial scale, they are plagued by the problem of scale dependence of many parameters of interest5

(Wiens, 1989; Steele, 1991; Whittaker et al., 2001; Hewitt et al., 2007, 2017; Schneider, 1994, 2009).6

Measurement issues (Olsen et al., 1999) and the overall cost of collecting field data over large areas7

are additional hurdles.8
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Large-scale studies may consist either of one-shot surveys (i.e., surveys conducted only once) or9

surveys repeated over time for monitoring purposes (Waite, 2000, Sec. 1.4). The goal may be to10

assess, for one or more parameters, the status (i.e., the value at a given time point), the change (i.e.,11

the difference between two time points) or a trend (i.e., a smooth pattern of variation over time). In12

all cases, spatial sampling is required simply because it is impossible to cover the entire survey area,13

especially when it is large.14

Whether or not a survey program is repeated over time, a first limitation consists in investigating15

biological variables (e.g., presence/absence, abundance) but not abiotic variables. The focus may be16

on parameters for a single species — for example a threatened one — or the survey may be inherently17

multispecific when addressing community questions (e.g., Morin, 2011; Sutherland et al., 2013; Keddy18

and Laughlin, 2022), especially when an abundance-based biodiversity index is the parameter of interest19

(e.g., Hill, 1973; Patil and Taillie, 1982; Magurran, 2004; Buckland et al., 2011, 2012). In biodiversity20

assessment, as a pragmatic necessity, only a subset of species can be surveyed. This raises the question21

of whether this will yield useful results and how these species should be selected (e.g., Lambeck, 1997;22

Manley et al., 2004 and references cited therein; Wiens et al., 2008; Klibansky et al., 2017).23

Given the current global biodiversity crisis, documenting and monitoring the conservation status24

of species has become a critical issue. The shift from single-species to multispecies conservation raises25

the question of program effectiveness, time and cost savings. In this context, a multispecies survey26

offers a practical approach to collect data on groups of species simultaneously over large or diverse27

regions. Such an approach maximizes data collection per field effort (DeWan and Zipkin, 2010). Thus,28

even if the focus tends to be on independent assessment for each species, it is cost-effective to survey29

a group of species based on their taxonomy or life history characteristics (e.g., breeding in a common30

habitat).31

The multispecies nature of surveys is always challenging. Nevertheless, such surveys can rely on32

large networks of observers, at least for certain groups of species, mainly animals, and especially diurnal33

birds, which are probably the most widely documented of all animal groups. It is not possible to cover34

all types of multispecies surveys for all taxa in all types of environments. Although our focus is not35

limited to monitoring nor to the case of birds, the examples given below will essentially refer to bird36

monitoring programs because of their overrepresentation in the ecological and wildlife literature. Of37

course, what is presented and discussed in this article may be useful in other contexts.38

Beyond the simple presence/absence, which already provides useful knowledge, abundance —39

whether absolute or relative — is a variable of interest in most multispecies surveys. However, counting40

wildlife is a much more difficult task than it appears to be at first glance, even for diurnal conspicuous41

species such as many bird species. In this article, we will not discuss counting methods and imperfect42

detection issues (see, among others, Lancia et al., 1996; Lloyd et al., 1998; Pollock et al., 2002; Green-43

wood and Robinson, 2006a; Buckland et al., 2008; Dénes et al., 2015), as we are concerned only with44

large-scale spatial sampling issues.45

Large-scale monitoring programs are crucial from a legal perspective because they play a key role in46

the classification of species on the IUCN Red List of Threatened Species (IUCN, 2022) and thus drive47

policy decisions. For birds, monitoring of the conservation status of species is carried out through48

programs implemented in different parts of the world and on different spatial scales, the oldest of49

which dates back to the early 20th century. These include the famous Christmas Bird Counts (CBC),50

the International Waterbird Census (IWC), and the Pan-European Common Bird Monitoring Scheme51

(PECBMS).52

Although the tradition of bird counting is quite old and bird counting programs cover different53

areas, including entire continents, little effort has been devoted to the statistical design of spatial54

sampling to obtain reliable estimates of parameters of interest (means, changes, trends, etc.). In55

general, multispecies bird surveys fall into the category of nonprobability sampling.56

Several forms of nonprobability sampling can be distinguished, in particular (i) convenience sam-57

pling (sometimes called accessibility sampling, see for example Young and Young, 1998, p. 93 or58

Barnett, 2002, p. 17); (ii) preferential sampling ; and (iii) purposive sampling (also known as judgment59

sampling). In the first case, units are selected for inclusion in the sample for reasons of convenience,60

generally ease of access and/or safety for the observers. In the second case, sampling units are selected61

according to partial knowledge or subjective judgments about the variables of interest, for example,62

by selecting units where high abundances are expected or which are thought to be the most diverse63

or species-rich. In the third case, units judged to be typical or appropriate for the survey are selected64

from the population.65

For example, the Dutch Breeding Bird Monitoring Program (BMP) relies on both convenience and66

preferential sampling since the observers are free to choose their study areas, and in each habitat,67

they may prefer the most attractive sites, i.e., those that are species-rich and have high bird densities68
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(Van Turnhout et al., 2008). An example of purposive sampling is the International Waterbird Count69

(IWC), a site-based counting scheme for monitoring waterbird numbers organized by Wetlands Inter-70

national, where sites are defined by the judgment of national coordinators and local observers (Delany,71

2010, Sec. 4).72

Convenience, preferential and purposive sampling are nonprobability ways of selecting a sample,73

that is, with unknown selection probabilities. They are prone to biased inference if the selection process74

cannot be finely modeled or if external reliable data sources are not used to calibrate the estimators.75

As pointed out by Olsen et al. (1999, p. 28): ”A clear understanding of how sites are selected is76

necessary but not sufficient to avoid the impact of selection bias when making inferences [· · · ]”.77

For example, in convenience sampling, the ease of sampling is often accompanied by a lack of78

awareness of the magnitude and direction of bias, which ultimately leads to unresolved questions79

about the true reliability of the estimates. In contrast, probability sampling is very strict, both in80

terms of the definition of the sampling units and in terms of the selection process: (i) the spatial81

sampling units are defined in advance — and preferably a list of units (sampling frame) is set up82

to allow for a fixed sample size — and (ii) the sample selection process corresponds to a prescribed83

probability mass function p(s), which defines the probability of selecting a sample s. The distribution84

p(s) characterizes a probability sampling plan (e.g., Royall, 2006, p. 2330; Nguyen, 2006, Sec. 2.1) or85

sampling design in the statistical sense of the term (e.g., Hedayat and Sinha, 1991, p. 3, Definition86

1.1; Särndal et al., 1992, p. 27). Since the selection probabilities of the samples are known exactly,87

it follows that the estimates are obtained in a sound and objective statistical framework (design-based88

estimation, e.g., Aubry and Francesiaz, 2022).89

Irrespective of the field considered, in most large-scale surveys, the design-based paradigm has90

become dominant in the theory and practice of survey sampling, and the reasons for this have been91

reviewed by Bellhouse (1988) from a historical perspective. Despite regular calls for reliance on proba-92

bility sampling in fundamental or applied ecology (Albert et al., 2010; Smith et al., 2017; Aubry et al.,93

2020; Boyd et al., 2023), many programs deviate from such recommendations to a greater or lesser94

extent. Some programs have some degree of randomization, but not to the extent provided by a (true)95

probability sampling plan.96

Reliable estimation involves minimizing both bias and uncertainty, the latter of which is caused97

by the (spatial) sampling variance. This variance is irrelevant in ecology, except as a nuisance to be98

minimized (see Link and Nichols, 1994). There are two main approaches to sampling optimization,99

depending on whether the spatial sampling (i) is guided by a model (e.g., Amorim et al., 2014; Carvalho100

et al., 2016) or (ii) relies on a probability sampling plan (e.g., Pavlacky et al., 2017; Van Wilgenburg101

et al., 2020) — with a continuum of possible intermediates that mix the use of both to diverse degrees102

(e.g., Marta et al., 2019). The present article follows the second approach, that is, it addresses the103

optimization of a probability sampling plan.104

Our interest in the problem of large-scale spatial sampling for a multispecies survey was motivated105

by the example of a scheme aimed at surveying migratory waterbirds during the breeding season on106

a national scale (European France). The aim of this methodological article is twofold: (i) to propose107

an approach for optimizing the stratification of sampling units when only a proxy for species richness108

is available at the design stage and (ii) to present an application of the stratification approach to our109

illustrative example in the case of a stratified two-stage sampling design, detailing the choices made110

to face the objectives and constraints.111

2. Motivating example112

The Office français de la biodiversité (OFB) — government agency dedicated to the protection and113

restoration of biodiversity in France — and the Ligue pour la protection des oiseaux (LPO) — the114

largest French nature conservation NGO — have joined forces to design and implement a nationwide115

survey (referred to as the LIMAT scheme) to collect data on breeding populations of waterbirds (ducks,116

geese, swans, coots, waders and grebes) to assess their conservation status in France and in Europe.117

The main objective of this survey is to estimate the size of breeding populations in European France,118

which will be used as a regular contribution to the Article 12 report of the EU Birds Directive. This119

report is produced every sixth year to document assessments such as The State of Nature in the EU120

(European Environment Agency, 2020), the French and European Red Lists of Birds (UICN France,121

MNHN, LPO, SEOF & ONCFS, 2016; International BirdLife, 2021) and African-Eurasian Waterbird122

Population Estimates (Nagy and Langendoen, 2021). As the species covered by the LIMAT scheme123

may be greatly affected by hunting activities — and many of these species are in decline — the results of124

the survey may also contribute to the work on breeding phenologies regularly requested from Member125

States by the European Commission (Key Concepts of Article 7(4) of Directive 79/409/EEC).126
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The initial implementation of the LIMAT scheme was planned to take place over two field seasons127

due to the workload involved in such a survey. Among the species covered by the LIMAT scheme,128

geographically rare species or those with less abundant populations were the subject of an exhaustive129

approach (census survey), while other more common and widespread species required the implemen-130

tation of a sample survey (see Table 1). Only the latter situation is considered here.131

Whenever a descriptive survey cannot be carried out in the form of a census — i.e., whenever it132

is not possible to list and/or visit all breeding and resting sites for a given species — sampling must133

be implemented. Allowing for the sampling of observation sites at the discretion of observers leads to134

serious difficulties in using the data collected (Gregory and Greenwood, 2008, Sec. 3.2.5) because (i)135

serious sampling biases can be introduced and (ii) statistical processing requires making assumptions136

that cannot be verified — at least not without further studies that should themselves be free of bias.137

Therefore, to collect observations for scientific purposes or for compliance with an environmental law,138

it is advisable to use a (probability) areal sampling approach that avoids the two problems mentioned139

above. Thus, we decided to rely on the theory and methods of probability sampling from finite140

populations (see, among others, Cochran, 1977; Särndal et al., 1992; Hankin et al., 2019; Tillé, 2020).141

Statistical estimation was planned to be performed in a (pure) design-based framework — at least as142

far as the issue of imperfect detection is not yet accounted for (see Aubry and Francesiaz, 2022, Sec.143

7.3).144

In the LIMAT scheme, several objectives and constraints have led us to consider a (relatively)145

complex sampling design: (a) the fact that we were interested in several species at the same time,146

whose geographical distributions differ (global scale) and which do not necessarily occupy exactly the147

same habitats (local scale); (b) the need to optimize sampling effort, i.e., to collect observations for148

as many species as possible in a limited number of visits; (c) the desire to limit as much as possible149

the sources of bias of all kinds that can arise in such a survey; and (d) the need to minimize travel150

between observation sites.151

The European part of France is divided into 96 departments of various surface areas (see Table152

2). The department is an intermediate administrative subdivision in France and corresponds to the153

territorial jurisdiction of various stakeholders involved in the LIMAT scheme, so the sample size in154

each department is important from a logistical point of view. The stakeholders requested that the155

number of selected ultimate sampling units — i.e., those on which observations were to be made —156

in each department should not exceed 80 to avoid an excessive survey burden. In what follows, this157

requirement is referred to as the logistical constraint.158

The sampling design chosen should be able to establish a trade-off between all the aforementioned159

objectives and constraints. It also necessarily depends on prior knowledge available before the survey160

is carried out. Since this was the first implementation of a survey based on a sampling design in161

European France for the species of interest, we did not have reliable quantitative data to determine162

the expected precision of the estimates. In addition, mapping of potential habitats for each of the163

species considered was not available. However, to document the distribution of species in European164

France, range maps of breeding species based on the French Birds Atlas (Issa and Muller, 2015) were165

available and updated for the postatlas period with citizen-science data collected on the Faune-France166

web portal (https://www.faune-france.org/) in September 2020. These range maps were available167

at a spatial resolution of 10 km × 10 km. In what follows, the recorded presence of a species in a 10168

km × 10 km grid cell is referred to as occurrence.169

An areal sampling frame of 10 km × 10 km grid cells can be constructed from the bird atlas data.170

Let Ud be the set of size Md containing the 10 km × 10 km grid cells where species d occurs, with171

d = 1, . . . , D (here, D = 25, see Table 1). We call the set Ud the (spatial) distribution of species d172

in European France. The union of the D species distributions leads to a potential common sampling173

frame U of size M = 5211:174

U =

D⋃
d=1

Ud

Let x be the number of species (or species richness) per grid cell. For species richness ranging from 1175

to L = 22, the frequency distribution of x shows a quasimonotone decrease (Fig. 1). The species dis-176

tributions are pictured in Fig. 2; they show diverse situations from the exclusively coastal distribution177

of the Kentish plover (Charadrius alexandrinus) to the widespread distribution of the mallard (Anas178

platyrhynchos) through the distribution of the common sandpiper (Actitis hypoleucos) along flowing179

rivers and streams.180
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Table 1: List of the D = 25 species covered by the spatial sampling in European France, sorted in increasing order of
the number of occurrences (Md) among the M = 5211 grid cells (10 km × 10 km) with at least one species occurrence.
% indicates the percentage of the grid cells in which the species occurs.

Rank Species Common name Md %

1 Tringa totanus Common redshank 167 3.2
2 Mergus merganser Goosander 179 3.4
3 Recurvirostra avosetta Pied avocet 185 3.6
4 Anser anser Greylag goose 187 3.6
5 Charadrius alexandrinus Kentish plover 199 3.8
6 Podiceps nigricollis Black-necked grebe 213 4.1
7 Anas crecca Common teal 266 5.1
8 Netta rufina Red-crested pochard 267 5.1
9 Spatula querquedula Garganey 280 5.4
10 Alopochen aegyptiaca Egyptian goose 329 6.3
11 Spatula clypeata Northern shoveler 382 7.3
12 Himantopus himantopus Black-winged stilt 392 7.5
13 Mareca strepera Gadwall 408 7.8
14 Branta canadensis Canada goose 502 9.6
15 Aythya fuligula Tufted duck 560 10.7
16 Tadorna tadorna Common shelduck 562 10.8
17 Actitis hypoleucos Common sandpiper 594 11.4
18 Aythya ferina Common pochard 688 13.2
19 Vanellus vanellus Northern lapwing 1 674 32.1
20 Charadrius dubius Little ringed plover 1 763 33.8
21 Cygnus olor Mute swan 1826 35.0
22 Podiceps cristatus Great crested grebe 2 354 45.2
23 Tachybaptus ruficollis Little grebe 2 861 54.9
24 Fulica atra Eurasian coot 3 027 58.1
25 Anas platyrhynchos Mallard 5 001 96.0

Figure 1: Frequency distribution of the number of species (x) among the M = 5211 grid cells (10 km × 10 km) with at
least one species occurrence.
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Figure 2: Distributions of the D = 25 species covered by the spatial sampling in European France, sorted in increasing
order of the number of occurrences Md — from left to right and from top to bottom — among the M = 5211 grid cells
(10 km × 10 km) with at least one species occurrence (light green background).
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Table 2: List of the 96 departments that make up the European France. k is the department identifier. A is the cadastral
surface area, expressed in km2. Note that department k = 20 corresponding to the island of Corsica was split in two in
1976, resulting in departments 2A and 2B (so the department identifier 20 is no longer used).

k Name A k Name A k Name A

01 Ain 5 762 32 Gers 6 257 64 Pyrénées-Atlantiques 7 645
02 Aisne 7 369 33 Gironde 9 976 65 Hautes-Pyrénées 4 464
03 Allier 7 340 34 Hérault 6 101 66 Pyrénées-Orientales 4 116
04 Alpes-de-Haute-Provence 6 925 35 Ille-et-Vilaine 6 775 67 Bas-Rhin 4 755
05 Hautes-Alpes 5 549 36 Indre 6 791 68 Haut-Rhin 3 525
06 Alpes-Maritimes 4 299 37 Indre-et-Loire 6 127 69 Rhône 3 249
07 Ardèche 5 529 38 Isère 7 432 70 Haute-Saône 5 360
08 Ardennes 5 229 39 Jura 4 999 71 Saône-et-Loire 8 575
09 Ariège 4 890 40 Landes 9 243 72 Sarthe 6 206
10 Aube 6 004 41 Loir-et-Cher 6 343 73 Savoie 6 028
11 Aude 6 139 42 Loire 4 781 74 Haute-Savoie 4 388
12 Aveyron 8 735 43 Haute-Loire 4 977 75 Paris 105
13 Bouches-du-Rhône 5 088 44 Loire-Atlantique 6 809 76 Seine-Maritime 6 278
14 Calvados 5 548 45 Loiret 6 775 77 Seine-et-Marne 5 915
15 Cantal 5 726 46 Lot 5 217 78 Yvelines 2 284
16 Charente 5 956 47 Lot-et-Garonne 5 361 79 Deux-Sèvres 5 999
17 Charente-Maritime 6 864 48 Lozère 5 167 80 Somme 6 170
18 Cher 7 235 49 Maine-et-Loire 7 172 81 Tarn 5 758
19 Corrèze 5 857 50 Manche 5 938 82 Tarn-et-Garonne 3 718
2A Corse-du-Sud 4 014 51 Marne 8 162 83 Var 5 973
2B Haute-Corse 4 666 52 Haute-Marne 6 211 84 Vaucluse 3 567
21 Côte-d’Or 8 763 53 Mayenne 5 175 85 Vendée 6 720
22 Côtes-d’Armor 6 878 54 Meurthe-et-Moselle 5 246 86 Vienne 6 990
23 Creuse 5 565 55 Meuse 6 211 87 Haute-Vienne 5 520
24 Dordogne 9 060 56 Morbihan 6 823 88 Vosges 5 874
25 Doubs 5 233 57 Moselle 6 216 89 Yonne 7 427
26 Drôme 6 530 58 Nièvre 6 817 90 Territoire de Belfort 609
27 Eure 6 040 59 Nord 5 743 91 Essonne 1 804
28 Eure-et-Loir 5 880 60 Oise 5 860 92 Hauts-de-Seine 176
29 Finistère 6 733 61 Orne 6 103 93 Seine-St-Denis 236
30 Gard 5 853 62 Pas-de-Calais 6 671 94 Val-de-Marne 245
31 Haute-Garonne 6 309 63 Puy-de-Dôme 7 970 95 Val-d’Oise 1 246

3. Methodology181

To address the various objectives and constraints mentioned above, we propose to rely on stratified182

two-stage sampling — combining the advantages of stratification and two-stage sampling (for bird183

surveys, see Gregory and Greenwood, 2008, Sec. 3.2.4, 3.2.9) — with optimized stratification defined184

from the species distributions.185

Let p(s) be a sampling design, i.e., a probability mass function corresponding to a well-specified186

random mechanism for selecting a sample from a population. The expectation operator is defined over187

all possible samples drawn using the given sampling design and is usually denoted using the subscript188

p as Ep [ · ] to avoid confusion with other possible sources of stochasticity.189

3.1. Sampling coverage of species distributions190

Let s be a sample of size m selected by a sampling design p(s); this sample intersects the species191

distribution Ud, resulting in the subset sd ⊆ Ud, i.e., formally:192

sd = s ∩ Ud

Of course, sd is a random set since it depends on s, which is itself randomly selected according to the193

sampling design p(s). Therefore, the size of sd (denoted md) is a random integer variable. We can194

define the sampling coverage probability of Ud by the design p(s) as:195

πd = Ep

[
ad
Ad

]
=

Ep [ad]

Ad
(1)
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where ad and Ad are the surface areas for sd and Ud, respectively. Again, ad depends on s and is196

therefore a random variable. If all the sampling units have the same surface area, then the coverage197

expressed in terms of the number of sampling units is equal to the coverage expressed in terms of198

surface area, and we have:199

πd = Ep

[
md

Md

]
=

Ep [md]

Md
(2)

Without loss of generality, in what follows, we assume that the sampling units are all of the same size,200

as is usually the case with distribution atlas data (see Gibbons et al., 2007; Dunn and Weston, 2008).201

Consider first that the sampling design is simple random sampling without replacement (SRSWOR).202

For a given species d, the population U is partitioned into Ud and U − Ud. Using an SRSWOR, the203

random size md follows a hypergeometric distribution with parameters M , Md and m. As a result, its204

expected value is Ep(md) = mMd/M , and therefore, we have πd = m/M , which does not depend on205

species d.206

Then, consider that the population U is partitioned into strata denoted Uh (of size Mh) for h =207

1, . . . ,H, that is, a set of mutually nonoverlapping subpopulations, formally:208

U =

H⋃
h=1

Uh with Uh ∩ Uh′ = ∅, h ̸= h′ and M =

H∑
h=1

Mh

For a given species d, its spatial distribution Ud is crossed with the partition by the strata, resulting209

in H classes denoted Udh (of size Mdh) for h = 1, . . . ,H, with possibly Mdh = 0 for some strata (Fig.210

3). With a stratified sampling design, the sample s itself is partitioned into s = ∪Hh=1sh, and the211

sample size is partitioned as m =
∑H

h=1 mh. The same applies to the size md, which is partitioned as212

md =
∑H

h=1 mdh, with possibly mdh = 0 for some strata (Fig. 3).213

If the sampling design is stratified simple random sampling without replacement (STR-SRSWOR),214

then the coverage probability is written as:215

πd =
1

Md
Ep

[
H∑

h=1

mdh

]
=

1

Md

H∑
h=1

Ep [mdh] =
1

Md

H∑
h=1

mh
Mdh

Mh
(3)

In contrast to the SRSWOR case, formula (3) shows that the coverage probability now depends on216

species d through Mdh and Md. Thus, stratification provides a way to vary the coverage probability217

πd.218

For more complex sampling designs than STR-SRSWOR, the derivation of the closed form for219

πd (Eq. 2) may become too complicated or even impossible. In such a situation, by replicating the220

sampling design enough times (e.g., at least 103 times) and counting the number of times species d is221

represented in sample s, one obtains a Monte Carlo approximation of Ep [md], from which that of πd222

is derived.223
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Figure 3: Set relations between the population U , stratified into strata U1, U2, U3 and U4 (light green background),
a species distribution Ud (in solid line) inside the population of sampling units, and a sample s (in dotted line). The
intersection between Ud and stratum U4 is empty. The intersection between Ud and stratum U2 is Ud2 (bright green
background). The intersection between Ud and s is sd (hatch and grid patterns). The intersection of Ud2 and s — or
equivalently, between U2 and sd — is sd2 (grid pattern on bright green background).

3.2. Stratified two-stage sampling design224

A stratified two-stage sampling design combines a two-stage sampling design with a stratified sam-225

pling design at the first stage. In other words, a two-stage sampling design is applied independently226

within each stratum. This design involves a three-level hierarchy defined from the sampled spatial do-227

main (in our motivating example, European France) to the elementary or ultimate sampling units, i.e.,228

spatial sampling units that are not further disaggregated and on which measurements or observations229

are made. These three levels are as follows (Fig. 4a): (i) a first level composed of strata, i.e., groups230

of units homogeneous with respect to a criterion to be defined (the strata are not sampled, they are231

all represented in the final sample selected); (ii) a second level composed of primary sampling units or232

PSUs, which group together units of lower level; and (iii) a third level composed of secondary sampling233

units or SSUs, which are the elementary sampling units, included in the PSUs.234

In this article, we rely on SRSWOR to sample the PSUs and the SSUs. Thus, within each stratum,235

a sample of PSUs is selected by SRSWOR; this is the first-stage sampling (Fig. 4b). Within each PSU236

selected at the first stage, a sample of SSUs is selected by SRSWOR; this is the second-stage sampling237

(Fig. 4c). Sampling in one stratum is independent of sampling in another, and the same is true for238

sampling in the PSUs (independence, see, for instance, Särndal et al., 1992, pp. 101-102, 134-135 or239

Tillé, 2020, pp. 67-68, 149).240

Figure 4: Schematic representation of stratified two-stage sampling. (a) Nine primary sampling units (PSUs) are stratified
into two strata (bright and light green backgrounds). Each PSU consists of nine secondary sampling units (SSUs). (b)
At the first stage, two PSUs per stratum are selected. (c) At the second stage, three SSUs are selected for each PSU of
the first stage sample.

9



3.3. Stratification241

We assume that species distribution data are available on the scale of the PSUs. In this section,242

we propose an appropriate method for defining PSU stratification based on this assumption.243

First, we note that the species distributions Ud (d = 1, . . . , D) do not define a partition of U since244

several species can occur in the same PSU. Therefore, a set of species distributions is not a strata245

system. The strata must be derived from the species distributions by specifying the following: (i)246

a criterion to be optimized, (ii) a within-strata sample size allocation rule, and (iii) an appropriate247

optimization method.248

3.3.1. Criterion to be optimized249

Species distributions can have very different area occupancies and spatial configurations. The250

fact that we are interested in several species at the same time, along with the need to optimize the251

sampling effort to collect observations for a maximum number of species in a limited number of visits252

(see objectives and constraints mentioned above), led us to try to maximize the overall sampling253

coverage probability for a given number of strata (denoted as H). As a criterion to be maximized, we254

can choose, for example, the average sampling coverage probability of species distributions, formally:255

J1 = Ep

[
1

D

D∑
d=1

md

Md

]
=

1

D

D∑
d=1

πd (4)

For a given sampling effort (i.e., the overall sampling size m), it is less likely that a sample will broadly256

cover the distribution of geographically rarer species, for which Md are the lowest — i.e., of lower257

prevalence (or weight) Wd = Md/M . To counterbalance this effect of geographical rarity — i.e., to258

cover the distributions of rare species with a higher probability than by using criterion J1 — one259

may still want to maximize the overall sampling coverage probability, but this time focusing on the260

geographically rare species. For this purpose, we propose a weighted, more general version:261

J2 = Ep

( D∑
d=1

W−λ
d

)−1 D∑
d=1

W−λ
d

md

Md

 =

(
D∑

d=1

W−λ
d

)−1 D∑
d=1

W−λ
d πd (5)

with λ ≥ 0. Criterion J1 is an instance of criterion J2 for λ = 0 (the same weight is used for all262

species). In this article, we will only use criterion J1 because, at this stage of our thinking, we have263

no argument for choosing the value of λ > 0 other than arbitrarily.264

3.3.2. Sample size allocation rule265

At the first sampling stage, the overall sample size m must be allocated to the H strata according266

to a specified rule.267

Let xi ≥ 1 be the number of species whose presence is recorded in the i-th PSU (i = 1, . . . ,M).268

The variable x can be termed as a size variable since it assigns a size (or importance) to the sampling269

units. In the context of a multispecies survey, to collect observations for a maximum number of species270

in a limited number of visits, a PSU i with a value xi < xj is less interesting to include in the sample271

than the PSU j. However, all PSUs in the sampled population must have a nonzero probability of272

being included in the sample by definition of a sampling design (e.g., Särndal et al., 1992, p. 32, Eq.273

2.4.6). Taking these elements into account, it follows that the allocation of the sample size can be274

proportional to the x-variable total (in a classical survey sampling context, see, for example, Särndal275

et al., 1992, p. 108 or Hidiroglou and Lavallée, 2009, Sec. 4.3.2.2):276

mh = m
Xh

X
(6)

with the partitioning of the overall x-total:277

X =

M∑
i=1

xi =

H∑
h=1

M∑
i=1

Z1ihxi =

H∑
h=1

Xh (7)

where Z1ih (i = 1, . . . ,M , h = 1, . . . ,H) is the membership indicator:278

Z1ih =

{
1 if PSU i belongs to stratum h
0 otherwise

(8)
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This allocation of the sampling effort overrepresents strata whose PSUs have a greater number of279

species present. Of course, for the variables of interest, this overrepresentation is accounted for in280

the definition of the estimators for the population mean or total, so that the estimators are design-281

unbiased. To estimate the sampling variance of the estimators, it is necessary to ensure that the282

within-stratum variance is estimable. Consequently, a minimum sample size per stratum must be283

imposed, i.e., mh ≥ mmin. Formally (see, for instance, Ardilly and Tillé, 2006, p. 160 or Bethlehem,284

2009, pp. 116-117), the absolute minimum is mmin = 2, but in practice, we have to take a higher value285

(i) to anticipate the nonresponse (otherwise, we might end up with mh < 2) and (ii) because reliable286

within-stratum sampling variance estimation often requires more than two values.287

3.3.3. Optimization method288

Obtaining a stratification that maximizes J1 (for example) involves solving a combinatorial opti-289

mization problem. The first step is to determine whether it is possible to obtain a globally optimal290

stratification scheme in a reasonable amount of time. Our problem is simplified by considering a single291

size variable (univariate case). For the sake of consistency, PSUs with the same number of species292

should belong to the same stratum. Thus, the problem is not expressed in terms of partitioning the293

PSUs but in terms of partitioning the (sorted) values of the number of species per PSU; each PSU will294

be assigned to the class that contains its number of species. The strata are constructed sequentially in295

the order induced by the size variable (here, in decreasing order, so that the first stratum corresponds296

to the most species-rich PSUs).297

Let L = (L1 > L2 > · · · > LL) be the sequence of values that the integer-valued size variable can298

take. Let PL,H be the set of partitions of L into H contiguous classes. The size of PL,H is written as299

(e.g., Aubry, 2023b, Eq. 6):300

|PL,H | =
H−1∏
h=1

1

h
(L− h) =

(
L− 1

H − 1

)
(9)

This size obviously depends on the data through the number of different values of species occurrences301

(L) and on the given number of strata (H). The combinatorial enumeration (Eq. 9) allows us to302

examine which values of L and H lead to a problem size that can be handled in a reasonable computing303

time (see Aubry, 2023b, p. 16). When the set of contiguous partitions to be considered is not too large,304

it follows that we can find a globally optimal partition — i.e., a partition that maximizes the criterion305

— by exhaustive construction of all distinct contiguous partitions (complete enumeration). For this306

purpose, a procedure based on the simulation of nested loops has been described by Aubry (2023b,307

Algorithm 10) and will not be reproduced here. The general algorithm consists of the following steps:308

0. Set J∗
1 ← 0;309

1. Construct a new stratification of the L values of the size variable into H strata (if there is no310

further new stratification, then the optimization is finished, J∗
1 is the global optimum for J1 and311

the saved stratification is optimal);312

2. Compute the strata sizes Mh for h = 1, . . . ,H;313

3. If a stratum size Mh is inadequate (e.g., too small). Go back to step 1;314

4. Compute the totals Xh for h = 1, . . . ,H (Eq. 7);315

5. Compute the sample sizes mh for h = 1, . . . ,H (Eq. 6) and round them while keeping their sum316

equal to m;317

6. Compute criterion J1 for the current stratification and allocation (Eq. 4, here using Eq. 3);318

7. If J1 > J∗
1 , then set J∗

1 ← J1 and save the current stratification. Go back to step 1.319

4. Application to the motivating example320

4.1. Sampling units and sampling frames321

In our motivating example, the primary sampling units (PSUs) are 10 km × 10 km grid cells, while322

the secondary sampling units (SSUs) are 500 m × 500 m grid cells (Fig. 5).323
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Figure 5: The primary sampling units (PSUs) are 10 km × 10 km grid cells, and the secondary sampling units (SSUs)
are 500 m × 500 m grid cells. PSUs with fewer than 15 SSUs are removed from the first-stage sampling frame (white
background). Details are provided in the text.

The SSUs were defined to carry out the field observations. Initially, we considered 250 m × 250324

m grid cells but it appeared that field observations were quite feasible on 500 m × 500 m grid cells.325

There was a trade-off between the size of the sampling frame — through the surface area of the SSUs326

— and the practical feasibility of SSU visits in the field.327

In these SSUs, the fieldwork method was left to the discretion of the observer. However, combining328

point counts with observations by transect to cover the maximum of each SSU surface area was strongly329

recommended. Most of the data were collected using a smartphone application, called NaturaList, from330

Biolovision (https://www.faune-france.org/index.php?m_id=20015), which allows the observers331

to record their movements within the SSUs, as well as the locations of detected birds. NaturaList is332

recommended by the LPO and the European Bird Census Council (EBCC).333

The second-stage sampling frame construction (based on elevation and habitat considerations) is334

not discussed here, as it is highly dependent on both the species of interest and the context in which335

the survey was prepared (available data and time). Furthermore, it is not necessary to be familiar336

with the process of second-stage sampling frame construction, as this article is essentially concerned337

with the stratification of PSUs. What is important, however, is the number of SSUs per PSU, as this338

determines which PSUs could remain in the sampling frame to meet a sample size constraint in each339

PSU selected at the first stage (see below).340

Restricting the European France 10 km × 10 km grid to land areas only results in a set of 5 875341

potential PSUs. This number is reduced to 5 211 if only PSUs with at least one recorded species342

occurrence (at the time of survey design stage, see Section 2) are considered. As noted by Samuel and343

Garton (1994), excluding PSUs where no (or relatively few) individuals of the species of interest are344

present makes sense and should be cost effective.345

Let Ni be the number of SSUs included in the i-th PSU. For each PSU i selected at the first stage,346

we drew by SRSWOR a sample of constant size ni = 10 + 5 SSUs, i.e., with ten regular SSUs and a347

reserve of five SSUs to allow substitution in case of nonresponse due to access difficulties (fenced area,348

access denied, etc.). In the reserve, the SSUs were numbered from 1 to 5; if one of the ten planned349

SSUs could not be used, the observers in the field could replace it with the first unit from the reserve,350

and so on. Thus, the observers could not choose the replacement SSU, but rather the selection was351

randomized and planned in advance to avoid selection bias. Due to the sample size mentioned above,352

we kept only those PSUs that guaranteed that this second-stage sample size constraint would be met.353

We added PSUs with no recorded species presence if they contained at least 15 SSUs (this additional354

set included only 48 PSUs). The final sampling frame included 2 839 PSUs (Fig. 6). Using an overall355

sampling fraction of approximately 10%, the first stage sample contained m = 285 PSUs.356
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Figure 6: The final sampling frame included M = 2839 PSUs with at least 15 SSUs. European France is partitioned
into 96 departments — the department is an intermediate administrative subdivision in France — corresponding to the
territorial jurisdiction of various stakeholders involved in the LIMAT scheme, for which there is a logistical constraint.
Details are provided in the text.

4.2. Stratification357

The principle of PSU stratification was adopted to maximize the average sampling coverage prob-358

ability of species distributions in the case of STR-SRSWOR. However, as the PSU sampling frame359

contained 48 PSUs with no observed species, these PSUs had to be grouped into an extra stratum360

that obviously could not participate in the optimal definition of stratification as intended. In this361

last stratum, by default, we considered that the status of the PSUs, in terms of species present, was362

undetermined, and we applied a sampling fraction of approximately 10%, resulting in the sampling of363

five of these PSUs. For the sake of consistency and because it is a reasonable lower bound, we required364

a minimum sample size of five PSUs in each stratum. This constraint on the sample size per stratum365

imposes the same lower bound on the size of the strata, i.e., we must have Mh ≥ mmin, bearing in366

mind that the sampling fraction in a stratum can be as high as 100% (the so-called take-all stratum).367

Stratification was therefore performed in two steps: (i) optimal stratification into H strata of the368

remaining 2 791 PSUs with at least one species present and (ii) addition of an (H + 1)-th stratum369

comprising the 48 PSUs whose status was considered undetermined. For the optimization, we used a370

sample size of m = 280 PSUs, as five PSUs were assigned to the (H + 1)-th stratum.371

For H = 1 (i.e., the case of SRSWOR), and for the same sample size, we obtained π0 ≃ 0.1372

regardless of the species — that is why we no longer use the subscript d to denote this probability in373

the case of SRSWOR — so J1 = π0 ≃ 0.1. Increasing the number of strata increases the optimal value374

of the criterion J1. For example, for H = 2, 3, 4, we obtain J∗
1 ≃ 0.149, J∗

1 ≃ 0.160 and J∗
1 ≃ 0.170.375

Therefore, the greater the number of strata is, the greater the optimal value of the criterion can be376
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increased. Actually, the maximum number of strata that can be formed is the result of constraints377

imposed by the situation at hand. At the first sampling stage, by setting the minimum sample size per378

stratum to five, an overall sampling fraction of approximately 10%, and the sampling effort allocation379

rule (see Section 3.3.2), the maximum number of strata for the stratification to be optimized could not380

be very high. In fact, this maximum number is only H = 5.381

Applying the formula in Eq. 9 — here with L = 22 and H = 5 — we calculated that only382

5 985 stratifications could be obtained. Using the algorithm described in Sec. 3.3.3, and imposing a383

minimum stratum sample size of five PSUs, the number of distinct stratifications to examine dropped384

to 4 845. The exhaustive search resulted in saving the best stratification found. The optimal value of385

the criterion is J∗
1 ≃ 0.177. The corresponding values of πd for the D = 25 species are given in Table386

3. The partitioning results in a transformation of a discrete variable with support x = 1, 2, . . . , 22 into387

an ordinal variable with five categories (Fig. 7).388

The reality of maximizing πd for a given number of strata H > 1 is obvious since only the mallard389

(rank 25 in Table 3) had a πd-value almost equal to π0; this was to be expected, as it is a very common390

and widespread species in European France. Goosander (Mergus merganser, rank 1 in Table 3) did391

not obtain a much higher πd-value than π0 because its distribution does not coincide much with that392

of the other species. Conversely, for a species with a coastal distribution such as the pied avocet393

(Recurvirostra avosetta, rank 4 in Table 3), for instance (see Fig. 2), the value of πd reached up to394

2.5 × π0. In summary, the coverage probability πd was greater than 1.5 × π0 for 16 species, and πd395

was even greater than 2×π0 for 9 species. In the case of STR-SRSWOR, these results represented the396

best possible compromise in terms of maximizing J1, conditional on the overall sample size allowed,397

the sample size allocation rule, the minimum within-stratum sample size constraint, and the number398

of strata used.399

Figure 7: Optimal partitioning into 5 classes for the frequency distribution of the number of species (x) among the
M = 2791 grid cells (10 km × 10 km) of the final sampling frame with at least one species occurrence.
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Table 3: Values of the sampling coverage probabilities (πd) for the D = 25 species covered by the spatial sampling in
European France, sorted in ascending order of the number of occurrences (Md), restricted to the final PSU sampling
frame. The previous rank refers to Table 1.

Rank Previous rank Species Common name Md πd

1 2 Mergus merganser Goosander 134 0.114
2 5 Charadrius alexandrinus Kentish plover 140 0.187
3 1 Tringa totanus Common redshank 157 0.237
4 3 Recurvirostra avosetta Pied avocet 164 0.250
5 4 Anser anser Greylag goose 170 0.232
6 6 Podiceps nigricollis Black-necked grebe 191 0.245
7 7 Anas crecca Common teal 221 0.223
8 9 Spatula querquedula Garganey 247 0.238
9 8 Netta rufina Red-crested pochard 249 0.193
10 10 Alopochen aegyptiaca Egyptian goose 262 0.186
11 11 Spatula clypeata Northern shoveler 330 0.221
12 12 Himantopus himantopus Black-winged stilt 331 0.204
13 13 Mareca strepera Gadwall 376 0.218
14 14 Branta canadensis Canada goose 395 0.152
15 16 Tadorna tadorna Common shelduck 405 0.180
16 17 Actitis hypoleucos Common sandpiper 441 0.125
17 15 Aythya fuligula Tufted duck 485 0.186
18 18 Aythya ferina Common pochard 599 0.175
19 19 Vanellus vanellus Northern lapwing 1 137 0.143
20 20 Charadrius dubius Little ringed plover 1 349 0.132
21 21 Cygnus olor Mute swan 1 432 0.135
22 22 Podiceps cristatus Great crested grebe 1 837 0.118
23 23 Tachybaptus ruficollis Little grebe 1 905 0.118
24 24 Fulica atra Eurasian coot 2 058 0.115
25 25 Anas platyrhynchos Mallard 2 745 0.101

It is visually verified that the cartographic representation of the size variable (Fig. 8a) is simplified400

by the stratification (Fig. 8b).401

Figure 8: (a) Number of species per PSU. (b) Stratification into six strata. The red color represents the richest PSUs in
terms of the number of species present.

At the first sampling stage, the allocation of sampling effort between PSU strata is given in Table402

4. The stratum containing the richest PSUs in terms of the number of species present (stratum h = 1)403

is censused (take-all stratum), whereas the poorest PSUs, belonging to the largest stratum (h = 5),404

15



are sampled with a sampling fraction of less than 6%. Thus, without considering the stratum of PSUs405

with undetermined status (h = 6), this stratification and allocation overrepresents, as expected, the406

most species-rich PSUs in the first stage sample.407

Table 4: Allocation of sampling effort between PSU strata. The theoretical sample sizes mh are deterministically rounded
to [mh] while keeping their sum equal to m. The sampling fraction in the stratum of PSUs with undetermined status is
set to the overall value of approximately 10%.

h Mh mh [mh] f (%)

1 7 7.00 7 100.0
2 13 8.62 9 69.2
3 323 69.93 70 21.7
4 788 101.43 101 12.8
5 1 660 93.02 93 5.6
6 48 5.00 5 10.4

Total 2 839 285 285

4.3. Sampling under a logistical constraint408

The logistical organization of the LIMAT scheme (”who surveys where”) was carried out according409

to the partitioning of the European territory of France into K = 96 departments (see Table 2 and Fig.410

6).411

Let N be the total number of SSUs in the second-stage sampling frame. Let s be a sample of412

size n drawn from the N SSUs. The number of SSUs in s that belong to a given department k (with413

k = 1, . . . ,K) is denoted by nk:414

nk =

N∑
j=1

I2jZ2jk (10)

with membership indicators I2j (j = 1, . . . , N):415

I2j =

{
1 if SSU j belongs to the second-stage sample
0 otherwise

(11)

and Z2jk (j = 1, . . . , N , k = 1, . . . ,K):416

Z2jk =

{
1 if SSU j belongs to department k
0 otherwise

(12)

A maximum number of SSUs (denoted as c) was set to ensure that each department can, logistically,417

survey the allocated portion of the sample s. The imposed constraint is therefore written as nk ≤ c418

(for k = 1, . . . ,K).419

The LIMAT scheme was designed to involve OFB agents and volunteer ornithologists from NGOs420

under the supervision of the LPO. Under these conditions of workload distribution among observer421

teams, we decided to survey a maximum of c = 80 SSUs per department.422

We also decided not to include the logistical constraint at the design stage but to consider it at423

the sample selection stage. Indeed, to control the sample size in each department at the design stage424

would require departments to define strata of PSUs. However, this posed at least two difficulties:425

(i) many PSUs straddle two (or more) departments, which would lead to them being more or less426

arbitrarily assigned to a single department (e.g., the one for which the surface area of the intersection427

is maximum) and (ii) as we already have another system of PSU strata based on species richness, the428

Cartesian product with the departments would have led to a multitude of strata, some of which would429

have been too small to be maintained.430

To account for the logistical constraint at the sample selection stage, the sampling design was431

applied many times to obtain a sample that minimized constraint overshoot. Constraint overshoot432

was quantified by computing a sample score, defined as:433
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f(s) =

K∑
k=1

δk (13)

with434

δk =

{
nk − c if nk > c
0 otherwise

(14)

The minimum (min), maximum (max) and average (n̄) numbers of SSUs sampled per department were435

approximated by applying the sampling design many times with m = 285 and n = 285 × 15 = 4 275436

(Table 5). The value of n̄ varied greatly between departments for three reasons: (i) their surface area437

varied (Table 2), (ii) their boundaries were independent of the spatial sampling frame (Fig. 6), and438

consequently, (iii) the number of SSUs in departments varied greatly. For example, the lowest value439

(n̄ = 1.57) was obtained for department k = 75, which corresponds to Paris, the capital city of France440

(see Table 2). As might be expected, some departments had a significantly higher weight than others441

in the overall sample, such as Ain (k = 01), Aisne (k = 02), Somme (k = 80), and Vendée (k = 85),442

because they have many favorable habitats and therefore contain many SSUs and are species-rich.443

Table 5: Statistical summaries for 106 replications of the sampling design with m = 285 and n = 4275, 15 SSUs per
PSU from the first-stage sample, and c = 80. Minimum (min), maximum (max) and average (n̄) numbers of SSUs per
department (k). Details are provided in the text.

k min max n̄ k min max n̄ k min max n̄

01 30 274 117.36 32 0 176 38.33 64 0 177 36.60
02 15 263 96.80 33 0 262 78.49 65 0 112 15.49
03 0 258 75.72 34 0 204 51.96 66 0 135 22.84
04 0 162 33.17 35 0 242 66.50 67 0 225 61.30
05 0 125 19.94 36 0 268 83.99 68 0 191 47.51
06 0 103 14.37 37 0 246 75.59 69 0 84 13.42
07 0 125 22.10 38 0 201 50.02 70 0 196 47.34
08 0 181 38.46 39 0 188 49.42 71 0 280 90.65
09 0 118 14.03 40 0 187 47.86 72 0 190 44.55
10 0 163 39.57 41 0 297 94.15 73 0 142 24.17
11 0 208 40.02 42 15 165 48.64 74 0 155 30.22
12 0 165 27.93 43 0 119 18.62 75 0 25 1.57
13 0 234 86.21 44 0 290 103.55 76 0 139 29.60
14 0 175 30.90 45 0 271 82.05 77 0 187 51.06
15 0 138 25.96 46 0 99 12.73 78 0 138 29.15
16 0 144 29.19 47 0 173 36.05 79 0 183 44.20
17 0 281 97.81 48 0 99 13.24 80 30 265 111.10
18 0 226 63.25 49 0 279 92.32 81 0 169 34.12
19 0 165 34.21 50 0 150 35.00 82 0 146 25.98
2A 0 90 10.71 51 0 213 61.03 83 0 105 12.82
2B 0 105 18.85 52 0 108 15.77 84 0 99 14.76
21 0 197 52.75 53 0 197 46.75 85 0 308 108.82
22 0 144 24.61 54 0 196 48.14 86 0 227 68.54
23 0 187 40.04 55 0 239 59.21 87 0 193 47.27
24 0 198 48.27 56 0 236 73.50 88 0 132 23.03
25 0 201 47.77 57 0 266 78.13 89 0 175 45.48
26 0 155 28.14 58 0 187 49.19 90 0 82 12.97
27 0 160 47.65 59 0 253 93.21 91 0 112 17.48
28 0 145 24.74 60 0 163 44.06 92 0 38 3.58
29 0 180 41.33 61 0 104 16.01 93 0 36 3.52
30 0 179 45.59 62 10 212 73.22 94 0 40 4.49
31 0 166 33.93 63 0 163 33.09 95 0 80 10.20

Of the 106 samples generated by the sampling design, the best one — in terms of meeting the444

logistical constraint — yielded the results in Table 6. In practice, it was expected that only 2 850 SSUs445
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would be surveyed (the additional 285 × 5 = 1 425 SSUs are those of the reserve due to possible unit446

nonresponse), so the constraint was largely met.447

For some departments, it was not possible to obtain δ = 0 because of their important weight in the448

overall sample, for example, in the case of Ain (k = 01), Somme (k = 80) or Vendée (k = 85) (Table 6).449

Conversely, for mountainous — e.g., Ariège (k = 09), Corse-du-Sud (k = 2A), Haute-Loire (k = 43)450

— or highly anthropized departments — e.g., Seine-St-Denis (k = 93), Val-de-Marne (k = 94), both451

in the Paris region — the n-value was zero or close to zero.452

Table 6: Distribution of the number of SSUs (n) per department (k) for the sample that best satisfies the logistical
constraint, that is, minimizes the sample score (sum of the δ-values). Results obtained for 106 replications of the
sampling design with m = 285 and n = 4275, 15 SSUs per PSU from the first-stage sample, and c = 80. Details are
provided in the text.

k n δ k n δ k n δ

01 98 18 32 0 0 64 78 0
02 65 0 33 53 0 65 30 0
03 86 6 34 53 0 66 0 0
04 60 0 35 45 0 67 75 0
05 30 0 36 75 0 68 90 10
06 15 0 37 59 0 69 0 0
07 55 0 38 29 0 70 75 0
08 15 0 39 16 0 71 68 0
09 0 0 40 87 7 72 53 0
10 77 0 41 80 0 73 37 0
11 37 0 42 58 0 74 21 0
12 53 0 43 0 0 75 4 0
13 57 0 44 87 7 76 30 0
14 15 0 45 82 2 77 52 0
15 21 0 46 10 0 78 44 0
16 19 0 47 34 0 79 46 0
17 45 0 48 0 0 80 94 14
18 48 0 49 83 3 81 52 0
19 30 0 50 45 0 82 40 0
2A 0 0 51 58 0 83 0 0
2B 45 0 52 15 0 84 20 0
21 59 0 53 66 0 85 100 20
22 30 0 54 35 0 86 59 0
23 45 0 55 75 0 87 57 0
24 37 0 56 45 0 88 40 0
25 46 0 57 75 0 89 46 0
26 21 0 58 37 0 90 44 0
27 45 0 59 67 0 91 23 0
28 60 0 60 41 0 92 8 0
29 90 10 61 15 0 93 0 0
30 43 0 62 53 0 94 0 0
31 75 0 63 45 0 95 44 0
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5. Discussion453

In this article, we illustrated the implementation of a stratified two-stage sampling design for454

a multispecies survey concerning 25 waterbird species in European France (LIMAT scheme). The455

sampling design was based on three spatially nested levels: (i) a level of strata of PSUs defined such456

as to maximize the average probability that a sample of PSUs drawn by stratified random sampling457

without replacement (STR-SRSWOR) covers the species distributions in European France, (ii) the458

units to be sampled at the first stage (PSUs), i.e., 10 km × 10 km grid cells, and (iii) the units to be459

sampled at the second stage (SSUs), defined as 500 m × 500 m grid cells, to carry out field observations.460

The knowledge available prior to the start of this survey was the spatial distribution data from461

the French Birds Atlas and Faune-France web portal, which documented the recorded presence of462

the species in the cells of a 10 km × 10 km grid. This grid is one of those officially used in Eu-463

ropean France for the National Inventory of Natural Heritage — in French, Inventaire National du464

Patrimoine Naturel (INPN, see https://inpn.mnhn.fr/accueil/index?lg=en). Note that this grid465

resolution also exists on the European scale but that the INPN grid does not coincide with that of the466

European Environment Agency (EEA reference grid, https://www.eea.europa.eu/data-and-maps/467

data/eea-reference-grids-2). It was quite natural to choose the grid used by the French Birds468

Atlas to define the LIMAT sampling frame of PSUs. Other examples of this practice may be found469

in the literature. For instance, in the United Kingdom, where bird counting and monitoring programs470

have a long tradition, Donald and Evans (1995) used nested sampling units within larger units defined471

by the Atlas of Breeding Birds (Gibbons et al., 1993). The use of the grid referenced by an atlas to472

define PSUs for subsequent abundance estimation is a recent development in atlas production (see, for473

example, Gibbons et al., 2007; Aizpurua et al., 2015; McCabe et al., 2018). We can therefore see a474

link, or even a convergence, between atlas production and monitoring programs.475

It has been suggested that atlas data ”[· · · ] can be used to stratify survey sites and so concentrate476

observer effort in areas where most species occurs, and minimize effort outside that range.” (Donald477

and Fuller, 1998), but to date, a formalization of this proposal has never been published. Therefore,478

the present article fills a methodological gap in the framework of probability sampling applied to479

multispecies surveys. The methodological proposal developed in this article (Sec. 3) corresponds to480

what Foster et al. (2020, p. 32) call ”combined usefulness”, i.e., ”the combined utility of each sampling481

[unit] to each component of the multivariate observation”, the multivariate nature of the survey here482

being due to the multispecies coordination of the sampling effort. This approach can be a source of483

inspiration for ecologists or wildlife biologists in charge of multispecies surveys.484

For bird surveys, the stratified two-stage sampling design that we propose here is unprecedented at485

the national level in European France and, to our knowledge, it is also unprecedented at the European486

level. In North America, examples of stratified multistage sampling designs exist for bird monitoring487

(e.g., Johnson et al., 2009; Pavlacky et al., 2017; Van Wilgenburg et al., 2020). An example of a488

recent program is the Integrated Monitoring in Bird Conservation Regions (IMBCR) (Pavlacky et al.,489

2017). The goal of the IMBCR is ”[· · · ] to provide a statistical foundation for reliable knowledge490

about bird populations with the ability to address management and conservation objectives at multiple491

spatial scales” (Pavlacky et al., 2017). Since 2015, this monitoring program has covered the states of492

Colorado, Montana, Wyoming, and parts of Arizona, Idaho, Kansas, Nebraska, New Mexico, North493

Dakota, Oklahoma, South Dakota, Texas and Utah. At the first level of stratification, the strata result494

from the Cartesian product of the bird conservation regions (BCRs) and the states, defining what495

Pavlacky et al. (2017) called BCR-by-state regions. At the second level, each BCR-by-state region is496

stratified according to stakeholder areas of interest, local needs and conservation goals. The PSUs are497

defined as 1 km × 1 km grid cells. Within each PSU, 16 SSUs are defined by points 250 m apart and498

125 m from the PSU boundary (see Pavlacky et al., 2017, Fig .2). Another recent example is provided499

by Van Wilgenburg et al. (2020) in the boreal region of Canada with the Boreal Optimal Sampling500

Strategy (BOSS). The BOSS was designed to monitor boreal birds for changes in population size and501

distribution using a stratified multistage sampling approach that incorporates habitat stratification,502

cost constraints, and optimization. In the BOSS, the PSUs are defined as hexagonal grid cells 5 km in503

diameter (i.e., a PSU is a hexagon circumscribed by a circle 5 km in diameter), while the SSUs were504

defined by a grid of points 300 m apart (see Van Wilgenburg et al., 2020 for more details).505

It is possible that there is publication bias and that sampling designs (in the statistical sense of506

probability sampling plans) are rarely described in the ecological literature or are not the subject of507

methodological articles. Regardless of whether they are rarely used or rarely published, we found508

few reports of large-scale sampling designs for multispecies surveys. Note that the situation is quite509

different for environmental monitoring and natural resource surveys (see Gregoire and Valentine, 2008),510

especially for forest inventories where complex sampling designs are not uncommon (e.g., Fattorini,511
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2015, and references cited therein; Vallée et al., 2015) and for which very good books are available512

(e.g., Schreuder et al., 1993; Mandallaz, 2008).513

5.1. Using stratified two-stage sampling514

One of the most basic sampling designs is simple random sampling without replacement (SRSWOR).515

The qualifier simple does not mean that it is elementary but that the selection probabilities are516

equal (Tillé, 2020, p. 27). With SRSWOR, the ultimate units are irregularly scattered over the517

sampled spatial domain. Therefore, SRSWOR is not practical for large-scale surveys due to the cost518

of transporting observers from one unit to another. One solution is to aggregate the sampled ultimate519

units into groups that are distributed across the spatial domain of interest. This is usually done by520

two-stage sampling. Oddly enough — and in agreement with McDonald (2012) — two-stage sampling521

is still relatively rare in ecology even though Conroy and Smith (1994) consider that ”surveys of wildlife522

populations [· · · ] are inherently multi-stage in design”. Note that in ecological and wildlife statistics,523

other terms are sometimes used to refer to multistage sampling, namely, multilevel sampling (e.g.,524

Greenwood and Robinson, 2006b) or hierarchical nested sampling (e.g., Skalski, 2012), terms that525

should be reserved for statistical modeling and variance component estimation.526

It is widely recognized that stratified multistage sampling is the most common type of design in527

large-scale surveys (e.g., Sampford, 1962, Preface; Stuart, 1984, p. 78; Singh and Chaudhary, 1986, p.528

233; Lohr, 2010, p. 282). This type of design is important enough to have its own entry in the famous529

Encyclopedia of Statistical Sciences (see Jain and Hausman, 2006). Moreover, it is one of the most530

common designs in federal survey programs in the USA (Nusser et al., 1998) and has been used, for531

instance, for the National Resources Inventory (NRI) (Nusser and Goebel, 1997; Nusser et al., 1998).532

The first reason for using a stratified two-stage sampling design is that it combines the advantages533

of both stratification and multistage sampling in terms of efficiency and costs. A second reason,534

specific to stratified sampling, is that it allows estimates to be computed directly at the level of535

strata (e.g., ecoregions, conservation regions, etc.) without the complications of estimating parameters536

for unplanned subdomains (e.g., Rao, 2003). A third reason, specific to two-stage sampling, is the537

possibility of defining the frame of SSUs only for the PSUs selected at the first stage (e.g., Johnson538

et al., 2009), which can represent a considerable economy in terms of preparatory work.539

For the LIMAT scheme, the choice of a two-stage stratified sampling design was driven primarily by540

the need to reduce transportation costs while collecting observations for a maximum number of species541

— through the sampling allocation rule and the strata optimization — and avoiding major sources of542

bias in the parameter estimation. In the LIMAT scheme, stratification of the PSUs is central to the543

multispecies nature of the survey.544

5.1.1. Optimizing the stratification545

Beyond the classical applications of sampling designs, there are applications that must be invented546

to meet the needs of a multispecies survey, depending on the objectives, relevant presurvey data and547

logistical constraints.548

In this article, we considered a situation where only the presence of the species in the PSUs was549

known, but no data were available to anticipate the precision of the estimators. Consequently, the550

stratification optimization has little to do with what is found in the survey sampling literature, which is551

essentially concerned with maximizing the precision of the estimators — i.e., minimizing their sampling552

variance — according to the frequency distribution of the variable of interest. In the case of linear553

estimators such as the total or mean estimator, maximizing the precision is achieved by minimizing554

the within-stratum variability for a given number of strata. This defines the objective function to be555

optimized. Of course, for other finite population parameter estimators, the objective function may be556

different (Tillé, 2020, Sec. 4.6), for instance, in the case of a quadratic parameter such as the finite557

population variance. Furthermore, the optimization method to be used depends on both the available558

knowledge and the number of variables of interest.559

Here, we propose to optimize a criterion defined as the average sampling coverage probability of560

species distributions. It is the use of this criterion and the number of species occurring in the PSUs561

as a size variable that makes the proposed sampling design a multispecies-oriented approach. Other562

criteria — based, for example, on the variance/covariance or on a diversity measure — are conceivable,563

but their practical usefulness remains to be evaluated.564

In the case of the sampling design we used at the first sampling stage (STR-SRSWOR), the criterion565

to be optimized can be calculated exactly. As mentioned in Section 3.1, it is always possible to use a566

Monte Carlo approach to estimate the criterion and thus be able to compare different sampling designs567

used at the first sampling stage, even the most complex ones.568
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The usual methods for optimizing a stratification (see, for instance, Tillé, 2020, Sec. 4.10.2, and569

references cited therein) are not relevant in the present article since the goal is to maximize the average570

sampling coverage probability of species distributions, not the between-strata variability. Due to the571

uniqueness of the size variable considered in this article (univariate case) and the very moderate number572

of distinct stratifications to be examined for L = 22 and H = 5, there is no difficulty in finding an573

optimal stratification by complete enumeration (see Aubry, 2023b).574

In general, the problem of stratification optimization requires some familiarity with algorithms,575

whereas most ecologists — even quantitative ones — usually combine already programmed computer576

procedures (they rarely start completely from scratch). It is therefore necessary to extend the available577

toolbox. For ease of computer implementation, the necessary basic algorithms can be found in Section578

3.3.3 of this article and in Aubry (2023b) for the full search algorithm we relied on.579

Note that it is not impossible that the proposed stratification — in addition to optimizing the580

coverage probability criterion — could increase the precision of estimation. Indeed, we overrepresented581

the most species-rich PSUs in the sample, so if there is a nonnegligible correlation between the number582

of species and the abundance of individuals, at least for some species (as it is reasonable to assume),583

then we would have increased the precision of the estimation as well. In particular, the use of a take-all584

stratum for the richest PSUs may be advantageous in that the sample units in that stratum do not585

contribute to the sampling variance. As far as the LIMAT scheme is concerned, this remains to be586

verified once the data are compiled, and this will be discussed in a future article.587

5.1.2. Optimizing the sample size allocation588

In this article, the allocation rule was specified first (Section 3.3.2), and then the stratification was589

optimized (Section 3.3.3). Conversely, if the strata are given first, then the goal is to optimize the590

allocation of sampling effort according to a specific rule.591

The classical literature on survey sampling mostly deals with univariate single objective situations592

(e.g., Särndal et al., 1992, Sec. 3.7.3; Hankin et al., 2019; Tillé, 2020, pp. 71-75), whereas multispecies593

surveys deal with multivariate and usually multiobjective situations. Again, the appropriate approach594

for optimizing the sampling effort allocation depends on the presurvey data available and the objectives595

of the survey. If available, species richness must be included among the design components considered,596

and the allocation of sampling effort should be consistent with it. When both species richness and597

within-stratum variances (or only proxies for these variances, e.g., Van Wilgenburg et al., 2020) are598

available, they can be used in combination to achieve an appropriate sample size allocation. A different599

perspective may be to consider the spatial distribution of observers and to allocate the overall sampling600

effort according to the observer density within strata, as in the British Breeding Bird Survey (Gregory601

and Baillie, 1994; Gregory, 2000; Gregory et al., 2004).602

Multispecies surveys are not only multivariate and generally multiobjective but are also often603

multiscale (e.g., Pavlacky et al., 2017; Van Wilgenburg et al., 2020), a feature that can be supported604

by nesting strata and/or sampling units within each other. When more than one sampling stage is605

involved in the design, one can also address the allocation of the sampling effort across the different606

stages. At the present state of our knowledge and skills, we can make four observations: (i) the question607

of optimizing the sampling effort allocation in a multivariate and/or, multiobjective and/or multiscale608

situation faces contradictions that can undermine all efforts, i.e., the compromise finally reached is609

often far from the optimum for the different objectives and design components considered; (ii) the610

use of sophisticated optimization methods is often not required in the area of probability sampling, as611

simple approaches generally do not yield distinguishable results from a practical point of view; (iii) the612

reality of the optimization should be questioned if the data used for this purpose are not themselves613

sufficiently reliable or recent, and if the phenomenon under study is not stable over time or space614

(which is precisely what a monitoring program seeks to document); and (iv) allocation optimization615

leads to a design in which the ultimate sampling units are sampled with unequal overall inclusion616

probabilities — as is the case in this paper — which complicates the use of the collected data for617

analytical purposes (e.g., correlative analyses and modeling), since then, one must necessarily account618

for the sampling weights, which are different (the sampling weights are the inverses of the inclusion619

probabilities).620

5.2. Investigating other possible designs621

The stratified two-stage sampling design we are concerned with in this article is a particular instance622

of a three-stage sampling design with SRSWOR at each stage, where the units at the first stage are623

sampled at 100% (thus forming strata) (Sukhatme et al., 1984, p. 321; Mandallaz, 2008, p. 34;624

Gupta and Kabe, 2011, p. 157). This design is referred to as STSI-SI in the taxonomy proposed by625

Domburg et al. (1997, Table 1) (SI stands for SRSWOR and ST stands for stratified, as in Särndal626
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et al., 1992). According to this taxonomy, other combinations of stratified sampling and two-stage627

sampling are possible; for instance, considering simple random sampling, stratification may occur at628

the second stage of sampling, leading to what Domburg et al. (1997, Table 1) abbreviated as the SI-629

STSI design. Stratification at both stages may also be considered. It is also possible to use more than630

two sampling stages, but the explicit formulation of the estimators quickly becomes very cumbersome,631

and an implicit formulation by recurrence is then recommended (see Aubry, 2021). Furthermore, it632

is important to understand that each additional stage of sampling is associated with an additional633

component of sampling variance. Therefore, among the multistage designs, two-stage sampling is both634

the simplest and the most statistically efficient. It is a reasonable trade-off between precision and635

travel costs, although not necessarily the most logistically efficient.636

Given the situation considered in this article — and corresponding to the motivating example637

— where we have atlas data defined at the PSU level, the key question is whether the species-rich638

PSUs can be overrepresented in the sample in a way other than the one proposed in this article. One639

possibility that was explored in the case of the LIMAT scheme, but not finally adopted, was to select640

the PSUs with probabilities proportional to the size variable (here, the number of species present in the641

PSUs). This type of sampling design called PPSWOR (an abbreviation for probability-proportional-642

to-size sampling without replacement) requires algorithms that can be complex (see Brewer and Hanif,643

1983; Tillé, 2006). This is not a problem as long as their computer implementation is correct (for an644

example, see Aubry, 2023a). The main problem with PPSWOR is the stability of the sampling variance645

estimator since the inclusion probabilities can vary greatly. In the present state of our knowledge and646

skills, we think that it is wiser to use the stratification and allocation proposed in this article, but the647

stability of the sampling variance estimators could be studied on fictitious examples, and it would be648

worthwhile to conduct such a study in depth.649

While sampling designs (stratified, with unequal probability proportional to size, multistage, mul-650

tiphase, balanced, etc.) can be combined in a variety of ways, it is important to keep in mind that the651

choices that are made must be related to the knowledge available and the objectives being pursued652

and that not all choices are equally relevant.653

5.3. Dealing with a large-scale multispecies survey654

As noted by Yates (1960, p. 5) ”The prime requirement of any large-scale sample survey is [· · · ]655

that the organization of the survey should be carried out by a person who has adequate knowledge and656

experience of sampling methods and their application.”. Indeed, the design of a large-scale survey657

requires good knowledge of the methods and techniques available. Such skills seem to be relatively658

rare among (quantitative) ecologists, which is an impediment to the design of such surveys and their659

widespread use in ecology. Benefiting from the expertise of a survey statistician is usually a rare660

opportunity in the case of ecological surveys (for counterexamples, see Fattorini et al., 2004; Baffetta661

et al., 2007; Fattorini et al., 2011). Again, note that the involvement of an expert in probability662

sampling is much more common when financial aspects are at stake, for instance, in forestry. However,663

statistical expertise is not enough, as a good understanding of thematic issues and logistical constraints664

is also needed, as Yates (1960, p. 6) pointed out in his time. In fact, a large-scale survey is more an665

exercise in statistical engineering rather than in pure sampling theory (Mahalanobis, 1944, 1946).666

Overall, designing a probability sampling plan for surveying multiple species at the same time is667

a somewhat complicated statistical engineering exercise. For such an exercise, biometricians who668

specialize in sampling issues can provide valuable assistance.669

As recently illustrated by Van Wilgenburg et al. (2020) and by the motivating example of the670

present article, the multiple and often competing constraints force one to make choices to reach the671

best possible compromise. As far as the LIMAT scheme is concerned, there is room for improvement,672

especially regarding the second stage sampling frame — the construction of which is not detailed as673

it is beyond the scope of this article — which does not sufficiently cover the habitats of the various674

species of interest. Moreover, the logistical constraint is accounted for at the time of sample selection,675

not at the design stage. If this additional selection process is not accounted for at the estimation stage,676

this implicitly means that it is considered unrelated to the variables of interest and can therefore be677

ignored without causing a biased estimation (see Aubry et al., 2020, Sec. 5.1). This aspect needs to678

be checked in a timely manner and with an appropriate assessment.679

A multispecies survey such as the LIMAT scheme faces two main challenges: (i) mapping potential680

habitats at the scale of the SSUs for each species or group of species and (ii) considering different681

species simultaneously for spatial and temporal sampling (depending on their phenology). The first682

point requires a massive amount of work, which is only touched upon in the LIMAT scheme— at least in683

its current state. It is expected that the mapping of potential habitats will make considerable progress684

thanks to remote sensing, which is the only way to cover large-scale areas (e.g., Kerr and Ostrovsky,685
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2003; Fuller et al., 2005). This task requires close collaboration between biologists specialized in the686

study of the species of interest and geomatics/remote sensing engineers to bridge the gap between687

ecological expertise and the processing of available environmental data layers (McDermid et al., 2005).688

Furthermore, the development of automated habitat mapping tools based on deep learning would689

significantly reduce the financial and human costs of wetland habitat classification, with the advantage690

that it could be updated annually (e.g., Rezaee et al., 2018; Hosseiny et al., 2021; Jamali et al., 2022a,b).691

The second point is a thorny one, and the answer given in this article and illustrated by the case of692

the LIMAT scheme is a solution obtained after eliminating several avenues explored in preliminary693

studies. The issue of temporal sampling is beyond the scope of this article, which is devoted only to694

spatial sampling, but it is essential in practice.695

6. Conclusions and perspectives696

Given its complexity, the topic of designing a probability sampling plan for multispecies surveys is697

still in its infancy. The overriding goal is to collect observations for as many species as possible in a698

limited number of visits. To advance the topic, in this article, we have formalized the proposal that699

spatial sampling units should be selected to concentrate sampling effort where most species occur and700

minimize effort elsewhere. To achieve this goal, we proposed an optimal stratification method adapted701

to the overrepresentation of the most species-rich sampling units in a sample. This method is based702

on a complete enumeration of admissible stratifications and is therefore exact.703

We have implemented and illustrated this method in the context of a real-world stratified two-stage704

sampling design in which primary sampling units (PSUs) are stratified according to species richness,705

and an allocation rule favors strata in which the PSUs are the richest. The advantage of presenting the706

method in the context of a real multispecies survey is to highlight both the complexity of the exercise707

and the practical feasibility of applying a stratified two-stage sampling design, at least for large-scale708

waterbird monitoring.709

The methodology described in this article (Sec. 3) is not specific to the motivating example used710

to illustrate it. It is obviously not specific to fauna and can be used for multispecies surveys of flora711

or fungi. This methodology should be useful whenever an abundance-based parameter needs to be712

estimated, whether in a context where each species is considered independently from the others or713

in the case of estimating an abundance-based biodiversity index. The aim in both cases is to collect714

observations for as many species as possible in a limited number of visits while avoiding the biases715

that can arise when spatial sampling is not defined within a sound statistical framework. The question716

of the usefulness of this methodology for the studies of community patterns — e.g., the analysis of717

interspecific association, ordination and classification — remains to be examined.718

To study and document the proposed approach in more detail, for the situation addressed in this719

article, which is based on the distribution of species among PSUs, future work could simulate cases720

that allow varying (i) the number of species; (ii) the shape of the frequency distribution for the species721

richness per PSU: (iii) the species prevalence; (iv) co-occurrence of species in the PSUs; (v) the number722

of strata; and so on. The aim of such a simulation study would be to identify the breaking points of723

the proposed approach and to provide guidelines for the design and implementation of multispecies724

surveys. This assumes first that the technical issues associated with such a simulation study have been725

adequately addressed.726

In our view, a great deal of theoretical work remains to be done to examine what other possible727

paths might be fruitful or, on the contrary, to document why they cannot be used for multispecies728

surveys. To accomplish this, we could examine different theoretical situations according to what729

is assumed to be known. Then, in a second step, we could examine to what extent these theoretical730

situations are close to reality and what possible adaptations should be made to the selected approaches731

to apply them effectively. This is a methodological research topic in itself, the complexity of which732

should not be underestimated, but which should be further explored in the future.733
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