On using stratified two-stage sampling for large-scale multispecies surveys

Philippe Aubry, Gwenaël Quaintenne, Jeremy Dupuy, Charlotte Francesiaz, Matthieu Guillemain, Alain Caizergues

To cite this version:

Philippe Aubry, Gwenaël Quaintenne, Jeremy Dupuy, Charlotte Francesiaz, Matthieu Guillemain, et al.. On using stratified two-stage sampling for large-scale multispecies surveys. Ecological Informatics, 2023, 77, pp.102229. 10.1016/j.ecoinf.2023.102229 . hal-04258681

HAL Id: hal-04258681

https://ofb.hal.science/hal-04258681

Submitted on 25 Oct 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On using stratified two-stage sampling for large-scale multispecies surveys
Philippe Aubry, Gwenaël Quaintenne, Jeremy Dupuy, Charlotte Francesiaz, Matthieu Guillemain, Alain Caizergues

Highlights

On using stratified two-stage sampling for large-scale multispecies surveys
Philippe Aubry, Gwenaël Quaintenne, Jeremy Dupuy, Charlotte Francesiaz, Matthieu Guillemain, Alain Caizergues

- We address the problem of designing a multispecies survey using multistage sampling.
- The multispecies nature of the survey sampling design is based on species richness.
- A distribution atlas documents the species richness for primary sampling units.
- Stratification of the primary sampling units aims to oversample the richest units.
- A stratified two-stage sampling design for a nationwide bird survey is documented.

On using stratified two-stage sampling for large-scale multispecies

 surveysPhilippe Aubry ${ }^{\text {a,* }}$, Gwenaël Quaintenne ${ }^{\text {b }}$, Jeremy Dupuy ${ }^{\text {b }}$, Charlotte Francesiaz ${ }^{\text {c }}$, Matthieu Guillemain ${ }^{\text {d }}$, Alain Caizergues ${ }^{\mathrm{e}}$
${ }^{a} O F B$ - Office français de la biodiversité - Direction surveillance, évaluation, données - Unité données et appui méthodologique, Saint Benoist, BP 20, 78612 Le Perray-en-Yvelines, France
${ }^{b}$ LPO - Ligue pour la protection des oiseaux - Pôle protection de la Nature - Service connaissance, Fonderies royales, CS 90263, 17300 Rochefort Cedex, France
${ }^{c} O F B$ - Office français de la biodiversité - Direction de la recherche et de l'appui scientifique - Service conservation et gestion durable des espèces exploitées, Les Portes du Soleil, 147 avenue de Lodève, 34990 Juvignac, France
${ }^{d} O F B$ - Office français de la biodiversité - Direction de la recherche et de l'appui scientifique - Service conservation et gestion durable des espèces exploitées, La Tour du Valat, Le Sambuc, 13200 Arles, France
${ }^{e} O F B$ - Office français de la biodiversité - Direction de la recherche et de l'appui scientifique - Service conservation et gestion durable des espèces exploitées, 8 Bd Albert Einstein, 44000 Nantes, France

Abstract

Designing a large-scale multispecies survey presents significant challenges due to its multivariate, multiscale, and often multiobjective nature. Because it is impractical to measure or observe all variables of interest at every location in the survey area, spatial sampling is crucial. To ensure a statistically sound survey, free of assumptions, randomization of the selection of spatial sampling units is required.

In a large-scale survey, minimizing travel costs requires multistage sampling in which nearby sampling units are grouped within higher-level sampling units. The design may be supplemented by one or more strata systems - possibly nested - that intervene at specific sampling stages. This article focuses on stratified two-stage sampling that balances statistical efficiency and travel cost minimization.

As presurvey knowledge, we assume that the spatial distribution of the species of interest is available for the sampled spatial domain, either from a spatial database or a published species distribution atlas. The multispecies nature of the survey sampling plan relies on these data. The primary sampling units are defined by the spatial grid resolution of the distribution data, while the presence data are used to stratify the PSUs to ensure that the sampling effort is concentrated where most species occur.

In this article, we formally define the sampling coverage probability of a species distribution when the selection of samples is randomized according to a given probability mass function (i.e., a probability sampling plan or sampling design, in the statistical sense of the term). By maximizing the sampling coverage probability averaged over the species, the stratification and allocation of spatial sampling units concentrate observer effort where most species occur and minimize effort elsewhere.

To guide and illustrate our ideas, we present as an example a multispecies waterbird program at the national scale in European France within the framework of probability sampling from finite populations.

Keywords:

multispecies surveys, spatial sampling, stratification, multistage sampling, species richness, design-based framework

1. Introduction

Large-scale ecological studies face numerous impediments and challenges due to the nature of the features under study. They require the measurement or observation of numerous biotic and abiotic variables (e.g., Legendre et al., 1989), and because of the changing nature of ecological processes with spatial scale, they are plagued by the problem of scale dependence of many parameters of interest (Wiens, 1989; Steele, 1991; Whittaker et al., 2001; Hewitt et al., 2007, 2017; Schneider, 1994, 2009). Measurement issues (Olsen et al., 1999) and the overall cost of collecting field data over large areas are additional hurdles.

[^0]Large-scale studies may consist either of one-shot surveys (i.e., surveys conducted only once) or surveys repeated over time for monitoring purposes (Waite, 2000, Sec. 1.4). The goal may be to assess, for one or more parameters, the status (i.e., the value at a given time point), the change (i.e., the difference between two time points) or a trend (i.e., a smooth pattern of variation over time). In all cases, spatial sampling is required simply because it is impossible to cover the entire survey area, especially when it is large.

Whether or not a survey program is repeated over time, a first limitation consists in investigating biological variables (e.g., presence/absence, abundance) but not abiotic variables. The focus may be on parameters for a single species - for example a threatened one - or the survey may be inherently multispecific when addressing community questions (e.g., Morin, 2011; Sutherland et al., 2013; Keddy and Laughlin, 2022), especially when an abundance-based biodiversity index is the parameter of interest (e.g., Hill, 1973; Patil and Taillie, 1982; Magurran, 2004; Buckland et al., 2011, 2012). In biodiversity assessment, as a pragmatic necessity, only a subset of species can be surveyed. This raises the question of whether this will yield useful results and how these species should be selected (e.g., Lambeck, 1997; Manley et al., 2004 and references cited therein; Wiens et al., 2008; Klibansky et al., 2017).

Given the current global biodiversity crisis, documenting and monitoring the conservation status of species has become a critical issue. The shift from single-species to multispecies conservation raises the question of program effectiveness, time and cost savings. In this context, a multispecies survey offers a practical approach to collect data on groups of species simultaneously over large or diverse regions. Such an approach maximizes data collection per field effort (DeWan and Zipkin, 2010). Thus, even if the focus tends to be on independent assessment for each species, it is cost-effective to survey a group of species based on their taxonomy or life history characteristics (e.g., breeding in a common habitat).

The multispecies nature of surveys is always challenging. Nevertheless, such surveys can rely on large networks of observers, at least for certain groups of species, mainly animals, and especially diurnal birds, which are probably the most widely documented of all animal groups. It is not possible to cover all types of multispecies surveys for all taxa in all types of environments. Although our focus is not limited to monitoring nor to the case of birds, the examples given below will essentially refer to bird monitoring programs because of their overrepresentation in the ecological and wildlife literature. Of course, what is presented and discussed in this article may be useful in other contexts.

Beyond the simple presence/absence, which already provides useful knowledge, abundance whether absolute or relative - is a variable of interest in most multispecies surveys. However, counting wildlife is a much more difficult task than it appears to be at first glance, even for diurnal conspicuous species such as many bird species. In this article, we will not discuss counting methods and imperfect detection issues (see, among others, Lancia et al., 1996; Lloyd et al., 1998; Pollock et al., 2002; Greenwood and Robinson, 2006a; Buckland et al., 2008; Dénes et al., 2015), as we are concerned only with large-scale spatial sampling issues.

Large-scale monitoring programs are crucial from a legal perspective because they play a key role in the classification of species on the IUCN Red List of Threatened Species (IUCN, 2022) and thus drive policy decisions. For birds, monitoring of the conservation status of species is carried out through programs implemented in different parts of the world and on different spatial scales, the oldest of which dates back to the early 20th century. These include the famous Christmas Bird Counts (CBC), the International Waterbird Census (IWC), and the Pan-European Common Bird Monitoring Scheme (PECBMS).

Although the tradition of bird counting is quite old and bird counting programs cover different areas, including entire continents, little effort has been devoted to the statistical design of spatial sampling to obtain reliable estimates of parameters of interest (means, changes, trends, etc.). In general, multispecies bird surveys fall into the category of nonprobability sampling.

Several forms of nonprobability sampling can be distinguished, in particular (i) convenience sampling (sometimes called accessibility sampling, see for example Young and Young, 1998, p. 93 or Barnett, 2002, p. 17); (ii) preferential sampling; and (iii) purposive sampling (also known as judgment sampling). In the first case, units are selected for inclusion in the sample for reasons of convenience, generally ease of access and/or safety for the observers. In the second case, sampling units are selected according to partial knowledge or subjective judgments about the variables of interest, for example, by selecting units where high abundances are expected or which are thought to be the most diverse or species-rich. In the third case, units judged to be typical or appropriate for the survey are selected from the population.

For example, the Dutch Breeding Bird Monitoring Program (BMP) relies on both convenience and preferential sampling since the observers are free to choose their study areas, and in each habitat, they may prefer the most attractive sites, i.e., those that are species-rich and have high bird densities
(Van Turnhout et al., 2008). An example of purposive sampling is the International Waterbird Count (IWC), a site-based counting scheme for monitoring waterbird numbers organized by Wetlands International, where sites are defined by the judgment of national coordinators and local observers (Delany, 2010, Sec. 4).

Convenience, preferential and purposive sampling are nonprobability ways of selecting a sample, that is, with unknown selection probabilities. They are prone to biased inference if the selection process cannot be finely modeled or if external reliable data sources are not used to calibrate the estimators. As pointed out by Olsen et al. (1999, p. 28): "A clear understanding of how sites are selected is necessary but not sufficient to avoid the impact of selection bias when making inferences $[\cdots]$ ".

For example, in convenience sampling, the ease of sampling is often accompanied by a lack of awareness of the magnitude and direction of bias, which ultimately leads to unresolved questions about the true reliability of the estimates. In contrast, probability sampling is very strict, both in terms of the definition of the sampling units and in terms of the selection process: (i) the spatial sampling units are defined in advance - and preferably a list of units (sampling frame) is set up to allow for a fixed sample size - and (ii) the sample selection process corresponds to a prescribed probability mass function $p(s)$, which defines the probability of selecting a sample s. The distribution $p(s)$ characterizes a probability sampling plan (e.g., Royall, 2006, p. 2330; Nguyen, 2006, Sec. 2.1) or sampling design in the statistical sense of the term (e.g., Hedayat and Sinha, 1991, p. 3, Definition 1.1; Särndal et al., 1992, p. 27). Since the selection probabilities of the samples are known exactly, it follows that the estimates are obtained in a sound and objective statistical framework (design-based estimation, e.g., Aubry and Francesiaz, 2022).

Irrespective of the field considered, in most large-scale surveys, the design-based paradigm has become dominant in the theory and practice of survey sampling, and the reasons for this have been reviewed by Bellhouse (1988) from a historical perspective. Despite regular calls for reliance on probability sampling in fundamental or applied ecology (Albert et al., 2010; Smith et al., 2017; Aubry et al., 2020; Boyd et al., 2023), many programs deviate from such recommendations to a greater or lesser extent. Some programs have some degree of randomization, but not to the extent provided by a (true) probability sampling plan.

Reliable estimation involves minimizing both bias and uncertainty, the latter of which is caused by the (spatial) sampling variance. This variance is irrelevant in ecology, except as a nuisance to be minimized (see Link and Nichols, 1994). There are two main approaches to sampling optimization, depending on whether the spatial sampling (i) is guided by a model (e.g., Amorim et al., 2014; Carvalho et al., 2016) or (ii) relies on a probability sampling plan (e.g., Pavlacky et al., 2017; Van Wilgenburg et al., 2020) - with a continuum of possible intermediates that mix the use of both to diverse degrees (e.g., Marta et al., 2019). The present article follows the second approach, that is, it addresses the optimization of a probability sampling plan.

Our interest in the problem of large-scale spatial sampling for a multispecies survey was motivated by the example of a scheme aimed at surveying migratory waterbirds during the breeding season on a national scale (European France). The aim of this methodological article is twofold: (i) to propose an approach for optimizing the stratification of sampling units when only a proxy for species richness is available at the design stage and (ii) to present an application of the stratification approach to our illustrative example in the case of a stratified two-stage sampling design, detailing the choices made to face the objectives and constraints.

2. Motivating example

The Office français de la biodiversité (OFB) - government agency dedicated to the protection and restoration of biodiversity in France - and the Ligue pour la protection des oiseaux (LPO) - the largest French nature conservation NGO - have joined forces to design and implement a nationwide survey (referred to as the LIMAT scheme) to collect data on breeding populations of waterbirds (ducks, geese, swans, coots, waders and grebes) to assess their conservation status in France and in Europe. The main objective of this survey is to estimate the size of breeding populations in European France, which will be used as a regular contribution to the Article 12 report of the EU Birds Directive. This report is produced every sixth year to document assessments such as The State of Nature in the EU (European Environment Agency, 2020), the French and European Red Lists of Birds (UICN France, MNHN, LPO, SEOF \& ONCFS, 2016; International BirdLife, 2021) and African-Eurasian Waterbird Population Estimates (Nagy and Langendoen, 2021). As the species covered by the LIMAT scheme may be greatly affected by hunting activities - and many of these species are in decline - the results of the survey may also contribute to the work on breeding phenologies regularly requested from Member States by the European Commission (Key Concepts of Article 7(4) of Directive 79/409/EEC).

The initial implementation of the LIMAT scheme was planned to take place over two field seasons due to the workload involved in such a survey. Among the species covered by the LIMAT scheme, geographically rare species or those with less abundant populations were the subject of an exhaustive approach (census survey), while other more common and widespread species required the implementation of a sample survey (see Table 1). Only the latter situation is considered here.

Whenever a descriptive survey cannot be carried out in the form of a census - i.e., whenever it is not possible to list and/or visit all breeding and resting sites for a given species - sampling must be implemented. Allowing for the sampling of observation sites at the discretion of observers leads to serious difficulties in using the data collected (Gregory and Greenwood, 2008, Sec. 3.2.5) because (i) serious sampling biases can be introduced and (ii) statistical processing requires making assumptions that cannot be verified - at least not without further studies that should themselves be free of bias. Therefore, to collect observations for scientific purposes or for compliance with an environmental law, it is advisable to use a (probability) areal sampling approach that avoids the two problems mentioned above. Thus, we decided to rely on the theory and methods of probability sampling from finite populations (see, among others, Cochran, 1977; Särndal et al., 1992; Hankin et al., 2019; Tillé, 2020). Statistical estimation was planned to be performed in a (pure) design-based framework - at least as far as the issue of imperfect detection is not yet accounted for (see Aubry and Francesiaz, 2022, Sec. 7.3).

In the LIMAT scheme, several objectives and constraints have led us to consider a (relatively) complex sampling design: (a) the fact that we were interested in several species at the same time, whose geographical distributions differ (global scale) and which do not necessarily occupy exactly the same habitats (local scale); (b) the need to optimize sampling effort, i.e., to collect observations for as many species as possible in a limited number of visits; (c) the desire to limit as much as possible the sources of bias of all kinds that can arise in such a survey; and (d) the need to minimize travel between observation sites.

The European part of France is divided into 96 departments of various surface areas (see Table 2). The department is an intermediate administrative subdivision in France and corresponds to the territorial jurisdiction of various stakeholders involved in the LIMAT scheme, so the sample size in each department is important from a logistical point of view. The stakeholders requested that the number of selected ultimate sampling units - i.e., those on which observations were to be made in each department should not exceed 80 to avoid an excessive survey burden. In what follows, this requirement is referred to as the logistical constraint.

The sampling design chosen should be able to establish a trade-off between all the aforementioned objectives and constraints. It also necessarily depends on prior knowledge available before the survey is carried out. Since this was the first implementation of a survey based on a sampling design in European France for the species of interest, we did not have reliable quantitative data to determine the expected precision of the estimates. In addition, mapping of potential habitats for each of the species considered was not available. However, to document the distribution of species in European France, range maps of breeding species based on the French Birds Atlas (Issa and Muller, 2015) were available and updated for the postatlas period with citizen-science data collected on the Faune-France web portal (https://www.faune-france.org/) in September 2020. These range maps were available at a spatial resolution of $10 \mathrm{~km} \times 10 \mathrm{~km}$. In what follows, the recorded presence of a species in a 10 $\mathrm{km} \times 10 \mathrm{~km}$ grid cell is referred to as occurrence.

An areal sampling frame of $10 \mathrm{~km} \times 10 \mathrm{~km}$ grid cells can be constructed from the bird atlas data. Let U_{d} be the set of size M_{d} containing the $10 \mathrm{~km} \times 10 \mathrm{~km}$ grid cells where species d occurs, with $d=1, \ldots, D$ (here, $D=25$, see Table 1). We call the set U_{d} the (spatial) distribution of species d in European France. The union of the D species distributions leads to a potential common sampling frame U of size $M=5211$:

$$
U=\bigcup_{d=1}^{D} U_{d}
$$

Let x be the number of species (or species richness) per grid cell. For species richness ranging from 1 to $L=22$, the frequency distribution of x shows a quasimonotone decrease (Fig. 1). The species distributions are pictured in Fig. 2; they show diverse situations from the exclusively coastal distribution of the Kentish plover (Charadrius alexandrinus) to the widespread distribution of the mallard (Anas platyrhynchos) through the distribution of the common sandpiper (Actitis hypoleucos) along flowing rivers and streams.

Table 1: List of the $D=25$ species covered by the spatial sampling in European France, sorted in increasing order of the number of occurrences $\left(M_{d}\right)$ among the $M=5211$ grid cells ($10 \mathrm{~km} \times 10 \mathrm{~km}$) with at least one species occurrence. \% indicates the percentage of the grid cells in which the species occurs.

Rank	Species	Common name	M_{d}	$\%$
1	Tringa totanus	Common redshank	167	3.2
2	Mergus merganser	Goosander	179	3.4
3	Recurvirostra avosetta	Pied avocet	185	3.6
4	Anser anser	Greylag goose	187	3.6
5	Charadrius alexandrinus	Kentish plover	199	3.8
6	Podiceps nigricollis	Black-necked grebe	213	4.1
7	Anas crecca	Common teal	266	5.1
8	Netta rufina	Red-crested pochard	267	5.1
9	Spatula querquedula	Garganey	280	5.4
10	Alopochen aegyptiaca	Egyptian goose	329	6.3
11	Spatula clypeata	Northern shoveler	382	7.3
12	Himantopus himantopus	Black-winged stilt	392	7.5
13	Mareca strepera	Gadwall	408	7.8
14	Branta canadensis	Canada goose	502	9.6
15	Aythya fuligula	Tufted duck	560	10.7
16	Tadorna tadorna	Common shelduck	562	10.8
17	Actitis hypoleucos	Common sandpiper	594	11.4
18	Aythya ferina	Common pochard	688	13.2
19	Vanellus vanellus	Northern lapwing	1674	32.1
20	Charadrius dubius	Little ringed plover	1763	33.8
21	Cygnus olor	Mute swan	1826	35.0
22	Podiceps cristatus	Great crested grebe	2354	45.2
23	Tachybaptus ruficollis	Little grebe	2861	54.9
24	Fulica atra	Eurasian coot	3027	58.1
25	Anas platyrhynchos	Mallard	5001	96.0

Figure 1: Frequency distribution of the number of species (x) among the $M=5211$ grid cells $(10 \mathrm{~km} \times 10 \mathrm{~km})$ with at least one species occurrence.

Figure 2: Distributions of the $D=25$ species covered by the spatial sampling in European France, sorted in increasing order of the number of occurrences M_{d} - from left to right and from top to bottom - among the $M=5211$ grid cells (10 km $\times 10 \mathrm{~km}$) with at least one species occurrence (light green background).

Table 2: List of the 96 departments that make up the European France. k is the department identifier. A is the cadastral surface area, expressed in km^{2}. Note that department $k=20$ corresponding to the island of Corsica was split in two in 1976, resulting in departments 2 A and 2 B (so the department identifier 20 is no longer used).

k	Name	A	k	Name	A	k	Name	A
01	Ain	5762	32	Gers	6257	64	Pyrénées-Atlantiques	7645
02	Aisne	7369	33	Gironde	9976	65	Hautes-Pyrénées	4464
03	Allier	7340	34	Hérault	6101	66	Pyrénées-Orientales	4116
04	Alpes-de-Haute-Provence	6925	35	Ille-et-Vilaine	6775	67	Bas-Rhin	4755
05	Hautes-Alpes	5549	36	Indre	6791	68	Haut-Rhin	3525
06	Alpes-Maritimes	4299	37	Indre-et-Loire	6127	69	Rhône	3249
07	Ardèche	5529	38	Isère	7432	70	Haute-Saône	5360
08	Ardennes	5229	39	Jura	4999	71	Saône-et-Loire	8575
09	Ariège	4890	40	Landes	9243	72	Sarthe	6206
10	Aube	6004	41	Loir-et-Cher	6343	73	Savoie	6028
11	Aude	6139	42	Loire	4781	74	Haute-Savoie	4388
12	Aveyron	8735	43	Haute-Loire	4977	75	Paris	105
13	Bouches-du-Rhône	5088	44	Loire-Atlantique	6809	76	Seine-Maritime	6278
14	Calvados	5548	45	Loiret	6775	77	Seine-et-Marne	5915
15	Cantal	5726	46	Lot	5217	78	Yvelines	2284
16	Charente	5956	47	Lot-et-Garonne	5361	79	Deux-Sèvres	5999
17	Charente-Maritime	6864	48	Lozère	5167	80	Somme	6170
18	Cher	7235	49	Maine-et-Loire	7172	81	Tarn	5758
19	Corrèze	5857	50	Manche	5938	82	Tarn-et-Garonne	3718
2A	Corse-du-Sud	4014	51	Marne	8162	83	Var	5973
2B	Haute-Corse	4666	52	Haute-Marne	6211	84	Vaucluse	3567
21	Côte-d'Or	8763	53	Mayenne	5175	85	Vendée	6720
22	Côtes-d'Armor	6878	54	Meurthe-et-Moselle	5246	86	Vienne	6990
23	Creuse	5565	55	Meuse	6211	87	Haute-Vienne	5520
24	Dordogne	9060	56	Morbihan	6823	88	Vosges	5874
25	Doubs	5233	57	Moselle	6216	89	Yonne	7427
26	Drôme	6530	58	Nièvre	6817	90	Territoire de Belfort	609
27	Eure	6040	59	Nord	5743	91	Essonne	1804
28	Eure-et-Loir	5880	60	Oise	5860	92	Hauts-de-Seine	176
29	Finistère	6733	61	Orne	6103	93	Seine-St-Denis	236
30	Gard	5853	62	Pas-de-Calais	6671	94	Val-de-Marne	245
31	Haute-Garonne	6309	63	Puy-de-Dôme	7970	95	Val-d'Oise	1246

3. Methodology

To address the various objectives and constraints mentioned above, we propose to rely on stratified two-stage sampling - combining the advantages of stratification and two-stage sampling (for bird surveys, see Gregory and Greenwood, 2008, Sec. 3.2.4, 3.2.9) - with optimized stratification defined from the species distributions.

Let $p(s)$ be a sampling design, i.e., a probability mass function corresponding to a well-specified random mechanism for selecting a sample from a population. The expectation operator is defined over all possible samples drawn using the given sampling design and is usually denoted using the subscript p as $\mathrm{E}_{p}[\cdot]$ to avoid confusion with other possible sources of stochasticity.

3.1. Sampling coverage of species distributions

Let s be a sample of size m selected by a sampling design $p(s)$; this sample intersects the species distribution U_{d}, resulting in the subset $s_{d} \subseteq U_{d}$, i.e., formally:

$$
s_{d}=s \cap U_{d}
$$

Of course, s_{d} is a random set since it depends on s, which is itself randomly selected according to the sampling design $p(s)$. Therefore, the size of s_{d} (denoted m_{d}) is a random integer variable. We can define the sampling coverage probability of U_{d} by the design $p(s)$ as:

$$
\begin{equation*}
\pi_{d}=\mathrm{E}_{p}\left[\frac{a_{d}}{A_{d}}\right]=\frac{\mathrm{E}_{p}\left[a_{d}\right]}{A_{d}} \tag{1}
\end{equation*}
$$

where a_{d} and A_{d} are the surface areas for s_{d} and U_{d}, respectively. Again, a_{d} depends on s and is therefore a random variable. If all the sampling units have the same surface area, then the coverage expressed in terms of the number of sampling units is equal to the coverage expressed in terms of surface area, and we have:

$$
\begin{equation*}
\pi_{d}=\mathrm{E}_{p}\left[\frac{m_{d}}{M_{d}}\right]=\frac{\mathrm{E}_{p}\left[m_{d}\right]}{M_{d}} \tag{2}
\end{equation*}
$$

Without loss of generality, in what follows, we assume that the sampling units are all of the same size, as is usually the case with distribution atlas data (see Gibbons et al., 2007; Dunn and Weston, 2008).

Consider first that the sampling design is simple random sampling without replacement (SRSWOR). For a given species d, the population U is partitioned into U_{d} and $U-U_{d}$. Using an SRSWOR, the random size m_{d} follows a hypergeometric distribution with parameters M, M_{d} and m. As a result, its expected value is $\mathrm{E}_{p}\left(m_{d}\right)=m M_{d} / M$, and therefore, we have $\pi_{d}=m / M$, which does not depend on species d.

Then, consider that the population U is partitioned into strata denoted U_{h} (of size M_{h}) for $h=$ $1, \ldots, H$, that is, a set of mutually nonoverlapping subpopulations, formally:

$$
U=\bigcup_{h=1}^{H} U_{h} \quad \text { with } \quad U_{h} \cap U_{h^{\prime}}=\varnothing, \quad h \neq h^{\prime} \quad \text { and } \quad M=\sum_{h=1}^{H} M_{h}
$$

For a given species d, its spatial distribution U_{d} is crossed with the partition by the strata, resulting in H classes denoted $U_{d h}$ (of size $M_{d h}$) for $h=1, \ldots, H$, with possibly $M_{d h}=0$ for some strata (Fig. 3). With a stratified sampling design, the sample s itself is partitioned into $s=\cup_{h=1}^{H} s_{h}$, and the sample size is partitioned as $m=\sum_{h=1}^{H} m_{h}$. The same applies to the size m_{d}, which is partitioned as $m_{d}=\sum_{h=1}^{H} m_{d h}$, with possibly $m_{d h}=0$ for some strata (Fig. 3).

If the sampling design is stratified simple random sampling without replacement (STR-SRSWOR), then the coverage probability is written as:

$$
\begin{equation*}
\pi_{d}=\frac{1}{M_{d}} \mathrm{E}_{p}\left[\sum_{h=1}^{H} m_{d h}\right]=\frac{1}{M_{d}} \sum_{h=1}^{H} \mathrm{E}_{p}\left[m_{d h}\right]=\frac{1}{M_{d}} \sum_{h=1}^{H} m_{h} \frac{M_{d h}}{M_{h}} \tag{3}
\end{equation*}
$$

In contrast to the SRSWOR case, formula (3) shows that the coverage probability now depends on species d through $M_{d h}$ and M_{d}. Thus, stratification provides a way to vary the coverage probability π_{d}.

For more complex sampling designs than STR-SRSWOR, the derivation of the closed form for π_{d} (Eq. 2) may become too complicated or even impossible. In such a situation, by replicating the sampling design enough times (e.g., at least 10^{3} times) and counting the number of times species d is represented in sample s, one obtains a Monte Carlo approximation of $\mathrm{E}_{p}\left[m_{d}\right]$, from which that of π_{d} is derived.

Figure 3: Set relations between the population U, stratified into strata U_{1}, U_{2}, U_{3} and U_{4} (light green background), a species distribution U_{d} (in solid line) inside the population of sampling units, and a sample s (in dotted line). The intersection between U_{d} and stratum U_{4} is empty. The intersection between U_{d} and stratum U_{2} is $U_{d 2}$ (bright green background). The intersection between U_{d} and s is s_{d} (hatch and grid patterns). The intersection of $U_{d 2}$ and s - or equivalently, between U_{2} and s_{d} - is $s_{d 2}$ (grid pattern on bright green background).

3.2. Stratified two-stage sampling design

A stratified two-stage sampling design combines a two-stage sampling design with a stratified sampling design at the first stage. In other words, a two-stage sampling design is applied independently within each stratum. This design involves a three-level hierarchy defined from the sampled spatial domain (in our motivating example, European France) to the elementary or ultimate sampling units, i.e., spatial sampling units that are not further disaggregated and on which measurements or observations are made. These three levels are as follows (Fig. 4a): (i) a first level composed of strata, i.e., groups of units homogeneous with respect to a criterion to be defined (the strata are not sampled, they are all represented in the final sample selected); (ii) a second level composed of primary sampling units or PSUs, which group together units of lower level; and (iii) a third level composed of secondary sampling units or SSUs, which are the elementary sampling units, included in the PSUs.

In this article, we rely on SRSWOR to sample the PSUs and the SSUs. Thus, within each stratum, a sample of PSUs is selected by SRSWOR; this is the first-stage sampling (Fig. 4b). Within each PSU selected at the first stage, a sample of SSUs is selected by SRSWOR; this is the second-stage sampling (Fig. 4c). Sampling in one stratum is independent of sampling in another, and the same is true for sampling in the PSUs (independence, see, for instance, Särndal et al., 1992, pp. 101-102, 134-135 or Tillé, 2020, pp. 67-68, 149).

Figure 4: Schematic representation of stratified two-stage sampling. (a) Nine primary sampling units (PSUs) are stratified into two strata (bright and light green backgrounds). Each PSU consists of nine secondary sampling units (SSUs). (b) At the first stage, two PSUs per stratum are selected. (c) At the second stage, three SSUs are selected for each PSU of the first stage sample.

3.3. Stratification

We assume that species distribution data are available on the scale of the PSUs. In this section, we propose an appropriate method for defining PSU stratification based on this assumption.

First, we note that the species distributions $U_{d}(d=1, \ldots, D)$ do not define a partition of U since several species can occur in the same PSU. Therefore, a set of species distributions is not a strata system. The strata must be derived from the species distributions by specifying the following: (i) a criterion to be optimized, (ii) a within-strata sample size allocation rule, and (iii) an appropriate optimization method.

3.3.1. Criterion to be optimized

Species distributions can have very different area occupancies and spatial configurations. The fact that we are interested in several species at the same time, along with the need to optimize the sampling effort to collect observations for a maximum number of species in a limited number of visits (see objectives and constraints mentioned above), led us to try to maximize the overall sampling coverage probability for a given number of strata (denoted as H). As a criterion to be maximized, we can choose, for example, the average sampling coverage probability of species distributions, formally:

$$
\begin{equation*}
J_{1}=\mathrm{E}_{p}\left[\frac{1}{D} \sum_{d=1}^{D} \frac{m_{d}}{M_{d}}\right]=\frac{1}{D} \sum_{d=1}^{D} \pi_{d} \tag{4}
\end{equation*}
$$

For a given sampling effort (i.e., the overall sampling size m), it is less likely that a sample will broadly cover the distribution of geographically rarer species, for which M_{d} are the lowest - i.e., of lower prevalence (or weight) $W_{d}=M_{d} / M$. To counterbalance this effect of geographical rarity - i.e., to cover the distributions of rare species with a higher probability than by using criterion J_{1} - one may still want to maximize the overall sampling coverage probability, but this time focusing on the geographically rare species. For this purpose, we propose a weighted, more general version:

$$
\begin{equation*}
J_{2}=\mathrm{E}_{p}\left[\left(\sum_{d=1}^{D} W_{d}^{-\lambda}\right)^{-1} \sum_{d=1}^{D} W_{d}^{-\lambda} \frac{m_{d}}{M_{d}}\right]=\left(\sum_{d=1}^{D} W_{d}^{-\lambda}\right)^{-1} \sum_{d=1}^{D} W_{d}^{-\lambda} \pi_{d} \tag{5}
\end{equation*}
$$

with $\lambda \geq 0$. Criterion J_{1} is an instance of criterion J_{2} for $\lambda=0$ (the same weight is used for all species). In this article, we will only use criterion J_{1} because, at this stage of our thinking, we have no argument for choosing the value of $\lambda>0$ other than arbitrarily.

3.3.2. Sample size allocation rule

At the first sampling stage, the overall sample size m must be allocated to the H strata according to a specified rule.

Let $x_{i} \geq 1$ be the number of species whose presence is recorded in the i-th PSU $(i=1, \ldots, M)$. The variable x can be termed as a size variable since it assigns a size (or importance) to the sampling units. In the context of a multispecies survey, to collect observations for a maximum number of species in a limited number of visits, a PSU i with a value $x_{i}<x_{j}$ is less interesting to include in the sample than the PSU j. However, all PSUs in the sampled population must have a nonzero probability of being included in the sample by definition of a sampling design (e.g., Särndal et al., 1992, p. 32, Eq. 2.4.6). Taking these elements into account, it follows that the allocation of the sample size can be proportional to the x-variable total (in a classical survey sampling context, see, for example, Särndal et al., 1992, p. 108 or Hidiroglou and Lavallée, 2009, Sec. 4.3.2.2):

$$
\begin{equation*}
m_{h}=m \frac{X_{h}}{X} \tag{6}
\end{equation*}
$$

with the partitioning of the overall x-total:

$$
\begin{equation*}
X=\sum_{i=1}^{M} x_{i}=\sum_{h=1}^{H} \sum_{i=1}^{M} Z_{1 i h} x_{i}=\sum_{h=1}^{H} X_{h} \tag{7}
\end{equation*}
$$

where $Z_{1 i h}(i=1, \ldots, M, h=1, \ldots, H)$ is the membership indicator:

$$
Z_{1 i h}= \begin{cases}1 & \text { if PSU } i \text { belongs to stratum } h \tag{8}\\ 0 & \text { otherwise }\end{cases}
$$

This allocation of the sampling effort overrepresents strata whose PSUs have a greater number of species present. Of course, for the variables of interest, this overrepresentation is accounted for in the definition of the estimators for the population mean or total, so that the estimators are designunbiased. To estimate the sampling variance of the estimators, it is necessary to ensure that the within-stratum variance is estimable. Consequently, a minimum sample size per stratum must be imposed, i.e., $m_{h} \geq m_{\text {min }}$. Formally (see, for instance, Ardilly and Tillé, 2006, p. 160 or Bethlehem, 2009, pp. 116-117), the absolute minimum is $m_{\min }=2$, but in practice, we have to take a higher value (i) to anticipate the nonresponse (otherwise, we might end up with $m_{h}<2$) and (ii) because reliable within-stratum sampling variance estimation often requires more than two values.

3.3.3. Optimization method

Obtaining a stratification that maximizes J_{1} (for example) involves solving a combinatorial optimization problem. The first step is to determine whether it is possible to obtain a globally optimal stratification scheme in a reasonable amount of time. Our problem is simplified by considering a single size variable (univariate case). For the sake of consistency, PSUs with the same number of species should belong to the same stratum. Thus, the problem is not expressed in terms of partitioning the PSUs but in terms of partitioning the (sorted) values of the number of species per PSU; each PSU will be assigned to the class that contains its number of species. The strata are constructed sequentially in the order induced by the size variable (here, in decreasing order, so that the first stratum corresponds to the most species-rich PSUs).

Let $\mathcal{L}=\left(\mathcal{L}_{1}>\mathcal{L}_{2}>\cdots>\mathcal{L}_{L}\right)$ be the sequence of values that the integer-valued size variable can take. Let $P_{L, H}$ be the set of partitions of \mathcal{L} into H contiguous classes. The size of $P_{L, H}$ is written as (e.g., Aubry, 2023b, Eq. 6):

$$
\begin{equation*}
\left|P_{L, H}\right|=\prod_{h=1}^{H-1} \frac{1}{h}(L-h)=\binom{L-1}{H-1} \tag{9}
\end{equation*}
$$

This size obviously depends on the data through the number of different values of species occurrences (L) and on the given number of strata (H). The combinatorial enumeration (Eq. 9) allows us to examine which values of L and H lead to a problem size that can be handled in a reasonable computing time (see Aubry, 2023b, p. 16). When the set of contiguous partitions to be considered is not too large, it follows that we can find a globally optimal partition - i.e., a partition that maximizes the criterion - by exhaustive construction of all distinct contiguous partitions (complete enumeration). For this purpose, a procedure based on the simulation of nested loops has been described by Aubry (2023b, Algorithm 10) and will not be reproduced here. The general algorithm consists of the following steps:
0. Set $J_{1}^{*} \leftarrow 0$;

1. Construct a new stratification of the L values of the size variable into H strata (if there is no further new stratification, then the optimization is finished, J_{1}^{*} is the global optimum for J_{1} and the saved stratification is optimal);
2. Compute the strata sizes M_{h} for $h=1, \ldots, H$;
3. If a stratum size M_{h} is inadequate (e.g., too small). Go back to step 1;
4. Compute the totals X_{h} for $h=1, \ldots, H$ (Eq. 7);
5. Compute the sample sizes m_{h} for $h=1, \ldots, H$ (Eq. 6) and round them while keeping their sum equal to m;
6. Compute criterion J_{1} for the current stratification and allocation (Eq. 4, here using Eq. 3);
7. If $J_{1}>J_{1}^{*}$, then set $J_{1}^{*} \leftarrow J_{1}$ and save the current stratification. Go back to step 1 .

4. Application to the motivating example

4.1. Sampling units and sampling frames

In our motivating example, the primary sampling units (PSUs) are $10 \mathrm{~km} \times 10 \mathrm{~km}$ grid cells, while the secondary sampling units (SSUs) are $500 \mathrm{~m} \times 500 \mathrm{~m}$ grid cells (Fig. 5).

Figure 5: The primary sampling units (PSUs) are $10 \mathrm{~km} \times 10 \mathrm{~km}$ grid cells, and the secondary sampling units (SSUs) are $500 \mathrm{~m} \times 500 \mathrm{~m}$ grid cells. PSUs with fewer than 15 SSUs are removed from the first-stage sampling frame (white background). Details are provided in the text.

The SSUs were defined to carry out the field observations. Initially, we considered $250 \mathrm{~m} \times 250$ m grid cells but it appeared that field observations were quite feasible on $500 \mathrm{~m} \times 500 \mathrm{~m}$ grid cells. There was a trade-off between the size of the sampling frame - through the surface area of the SSUs - and the practical feasibility of SSU visits in the field.

In these SSUs, the fieldwork method was left to the discretion of the observer. However, combining point counts with observations by transect to cover the maximum of each SSU surface area was strongly recommended. Most of the data were collected using a smartphone application, called NaturaList, from Biolovision (https://www.faune-france.org/index.php?m_id=20015), which allows the observers to record their movements within the SSUs, as well as the locations of detected birds. NaturaList is recommended by the LPO and the European Bird Census Council (EBCC).

The second-stage sampling frame construction (based on elevation and habitat considerations) is not discussed here, as it is highly dependent on both the species of interest and the context in which the survey was prepared (available data and time). Furthermore, it is not necessary to be familiar with the process of second-stage sampling frame construction, as this article is essentially concerned with the stratification of PSUs. What is important, however, is the number of SSUs per PSU, as this determines which PSUs could remain in the sampling frame to meet a sample size constraint in each PSU selected at the first stage (see below).

Restricting the European France $10 \mathrm{~km} \times 10 \mathrm{~km}$ grid to land areas only results in a set of 5875 potential PSUs. This number is reduced to 5211 if only PSUs with at least one recorded species occurrence (at the time of survey design stage, see Section 2) are considered. As noted by Samuel and Garton (1994), excluding PSUs where no (or relatively few) individuals of the species of interest are present makes sense and should be cost effective.

Let N_{i} be the number of SSUs included in the i-th PSU. For each PSU i selected at the first stage, we drew by SRSWOR a sample of constant size $n_{i}=10+5$ SSUs, i.e., with ten regular SSUs and a reserve of five SSUs to allow substitution in case of nonresponse due to access difficulties (fenced area, access denied, etc.). In the reserve, the SSUs were numbered from 1 to 5 ; if one of the ten planned SSUs could not be used, the observers in the field could replace it with the first unit from the reserve, and so on. Thus, the observers could not choose the replacement SSU, but rather the selection was randomized and planned in advance to avoid selection bias. Due to the sample size mentioned above, we kept only those PSUs that guaranteed that this second-stage sample size constraint would be met. We added PSUs with no recorded species presence if they contained at least 15 SSUs (this additional set included only 48 PSUs). The final sampling frame included 2839 PSUs (Fig. 6). Using an overall sampling fraction of approximately 10%, the first stage sample contained $m=285$ PSUs.

Figure 6: The final sampling frame included $M=2839$ PSUs with at least 15 SSUs. European France is partitioned into 96 departments - the department is an intermediate administrative subdivision in France - corresponding to the territorial jurisdiction of various stakeholders involved in the LIMAT scheme, for which there is a logistical constraint. Details are provided in the text.

4.2. Stratification

The principle of PSU stratification was adopted to maximize the average sampling coverage probability of species distributions in the case of STR-SRSWOR. However, as the PSU sampling frame contained 48 PSUs with no observed species, these PSUs had to be grouped into an extra stratum that obviously could not participate in the optimal definition of stratification as intended. In this last stratum, by default, we considered that the status of the PSUs, in terms of species present, was undetermined, and we applied a sampling fraction of approximately 10%, resulting in the sampling of five of these PSUs. For the sake of consistency and because it is a reasonable lower bound, we required a minimum sample size of five PSUs in each stratum. This constraint on the sample size per stratum imposes the same lower bound on the size of the strata, i.e., we must have $M_{h} \geq m_{\text {min }}$, bearing in mind that the sampling fraction in a stratum can be as high as 100% (the so-called take-all stratum).

Stratification was therefore performed in two steps: (i) optimal stratification into H strata of the remaining 2791 PSUs with at least one species present and (ii) addition of an $(H+1)$-th stratum comprising the 48 PSUs whose status was considered undetermined. For the optimization, we used a sample size of $m=280$ PSUs, as five PSUs were assigned to the $(H+1)$-th stratum.

For $H=1$ (i.e., the case of SRSWOR), and for the same sample size, we obtained $\pi_{0} \simeq 0.1$ regardless of the species - that is why we no longer use the subscript d to denote this probability in the case of SRSWOR - so $J_{1}=\pi_{0} \simeq 0.1$. Increasing the number of strata increases the optimal value of the criterion J_{1}. For example, for $H=2,3,4$, we obtain $J_{1}^{*} \simeq 0.149, J_{1}^{*} \simeq 0.160$ and $J_{1}^{*} \simeq 0.170$. Therefore, the greater the number of strata is, the greater the optimal value of the criterion can be
increased. Actually, the maximum number of strata that can be formed is the result of constraints imposed by the situation at hand. At the first sampling stage, by setting the minimum sample size per stratum to five, an overall sampling fraction of approximately 10%, and the sampling effort allocation rule (see Section 3.3.2), the maximum number of strata for the stratification to be optimized could not be very high. In fact, this maximum number is only $H=5$.

Applying the formula in Eq. 9 - here with $L=22$ and $H=5$ - we calculated that only 5985 stratifications could be obtained. Using the algorithm described in Sec. 3.3.3, and imposing a minimum stratum sample size of five PSUs, the number of distinct stratifications to examine dropped to 4845 . The exhaustive search resulted in saving the best stratification found. The optimal value of the criterion is $J_{1}^{*} \simeq 0.177$. The corresponding values of π_{d} for the $D=25$ species are given in Table 3. The partitioning results in a transformation of a discrete variable with support $x=1,2, \ldots, 22$ into an ordinal variable with five categories (Fig. 7).

The reality of maximizing π_{d} for a given number of strata $H>1$ is obvious since only the mallard (rank 25 in Table 3) had a π_{d}-value almost equal to π_{0}; this was to be expected, as it is a very common and widespread species in European France. Goosander (Mergus merganser, rank 1 in Table 3) did not obtain a much higher π_{d}-value than π_{0} because its distribution does not coincide much with that of the other species. Conversely, for a species with a coastal distribution such as the pied avocet (Recurvirostra avosetta, rank 4 in Table 3), for instance (see Fig. 2), the value of π_{d} reached up to $2.5 \times \pi_{0}$. In summary, the coverage probability π_{d} was greater than $1.5 \times \pi_{0}$ for 16 species, and π_{d} was even greater than $2 \times \pi_{0}$ for 9 species. In the case of STR-SRSWOR, these results represented the best possible compromise in terms of maximizing J_{1}, conditional on the overall sample size allowed, the sample size allocation rule, the minimum within-stratum sample size constraint, and the number of strata used.

Figure 7: Optimal partitioning into 5 classes for the frequency distribution of the number of species (x) among the $M=2791$ grid cells ($10 \mathrm{~km} \times 10 \mathrm{~km}$) of the final sampling frame with at least one species occurrence.

Table 3: Values of the sampling coverage probabilities $\left(\pi_{d}\right)$ for the $D=25$ species covered by the spatial sampling in European France, sorted in ascending order of the number of occurrences $\left(M_{d}\right)$, restricted to the final PSU sampling frame. The previous rank refers to Table 1.

Rank	Previous rank	Species	Common name	M_{d}	π_{d}
1	2	Mergus merganser	Goosander	134	0.114
2	5	Charadrius alexandrinus	Kentish plover	140	0.187
3	1	Tringa totanus	Common redshank	157	0.237
4	3	Recurvirostra avosetta	Pied avocet	164	0.250
5	4	Anser anser	Greylag goose	170	0.232
6	6	Podiceps nigricollis	Black-necked grebe	191	0.245
7	7	Anas crecca	Common teal	221	0.223
8	9	Spatula querquedula	Garganey	247	0.238
9	8	Netta rufina	Red-crested pochard	249	0.193
10	10	Alopochen aegyptiaca	Egyptian goose	262	0.186
11	11	Spatula clypeata	Northern shoveler	330	0.221
12	12	Himantopus himantopus	Black-winged stilt	331	0.204
13	13	Mareca strepera	Gadwall	376	0.218
14	14	Branta canadensis	Canada goose	395	0.152
15	16	Tadorna tadorna	Common shelduck	405	0.180
16	17	Actitis hypoleucos	Common sandpiper	441	0.125
17	15	Aythya fuligula	Tufted duck	485	0.186
18	18	Aythya ferina	Common pochard	599	0.175
19	19	Vanellus vanellus	Northern lapwing	1137	0.143
20	20	Charadrius dubius	Little ringed plover	1349	0.132
21	21	Cygnus olor	Mute swan	1432	0.135
22	22	Podiceps cristatus	Great crested grebe	1837	0.118
23	23	Tachybaptus ruficollis	Little grebe	1905	0.118
24	24	Fulica atra	Eurasian coot	2058	0.115
25	25	Anas platyrhynchos	Mallard	2745	0.101

It is visually verified that the cartographic representation of the size variable (Fig. 8a) is simplified

Figure 8: (a) Number of species per PSU. (b) Stratification into six strata. The red color represents the richest PSUs in terms of the number of species present. y the stratification (Fig. 8b).

At the first sampling stage, the allocation of sampling effort between PSU strata is given in Table 4. The stratum containing the richest PSUs in terms of the number of species present (stratum $h=1$) is censused (take-all stratum), whereas the poorest PSUs, belonging to the largest stratum $(h=5)$,
are sampled with a sampling fraction of less than 6%. Thus, without considering the stratum of PSUs with undetermined status $(h=6)$, this stratification and allocation overrepresents, as expected, the most species-rich PSUs in the first stage sample.

Table 4: Allocation of sampling effort between PSU strata. The theoretical sample sizes m_{h} are deterministically rounded to $\left[m_{h}\right]$ while keeping their sum equal to m. The sampling fraction in the stratum of PSUs with undetermined status is set to the overall value of approximately 10%.

h	M_{h}	m_{h}	$\left[m_{h}\right]$	$f(\%)$
1	7	7.00	7	100.0
2	13	8.62	9	69.2
3	323	69.93	70	21.7
4	788	101.43	101	12.8
5	1660	93.02	93	5.6
6	48	5.00	5	10.4
Total	2839	285	285	

4.3. Sampling under a logistical constraint

The logistical organization of the LIMAT scheme ("who surveys where") was carried out according to the partitioning of the European territory of France into $K=96$ departments (see Table 2 and Fig. $6)$.

Let N be the total number of SSUs in the second-stage sampling frame. Let s be a sample of size n drawn from the N SSUs. The number of SSUs in s that belong to a given department k (with $k=1, \ldots, K)$ is denoted by n_{k} :

$$
\begin{equation*}
n_{k}=\sum_{j=1}^{N} I_{2 j} Z_{2 j k} \tag{10}
\end{equation*}
$$

with membership indicators $I_{2 j}(j=1, \ldots, N)$:

$$
I_{2 j}= \begin{cases}1 & \text { if SSU } j \text { belongs to the second-stage sample } \tag{11}\\ 0 & \text { otherwise }\end{cases}
$$

and $Z_{2 j k}(j=1, \ldots, N, k=1, \ldots, K)$:

$$
Z_{2 j k}= \begin{cases}1 & \text { if } \operatorname{SSU} j \text { belongs to department } k \tag{12}\\ 0 & \text { otherwise }\end{cases}
$$

A maximum number of SSUs (denoted as c) was set to ensure that each department can, logistically, survey the allocated portion of the sample s. The imposed constraint is therefore written as $n_{k} \leq c$ (for $k=1, \ldots, K$).

The LIMAT scheme was designed to involve OFB agents and volunteer ornithologists from NGOs under the supervision of the LPO. Under these conditions of workload distribution among observer teams, we decided to survey a maximum of $c=80$ SSUs per department.

We also decided not to include the logistical constraint at the design stage but to consider it at the sample selection stage. Indeed, to control the sample size in each department at the design stage would require departments to define strata of PSUs. However, this posed at least two difficulties: (i) many PSUs straddle two (or more) departments, which would lead to them being more or less arbitrarily assigned to a single department (e.g., the one for which the surface area of the intersection is maximum) and (ii) as we already have another system of PSU strata based on species richness, the Cartesian product with the departments would have led to a multitude of strata, some of which would have been too small to be maintained.

To account for the logistical constraint at the sample selection stage, the sampling design was applied many times to obtain a sample that minimized constraint overshoot. Constraint overshoot was quantified by computing a sample score, defined as:

$$
\begin{equation*}
f(s)=\sum_{k=1}^{K} \delta_{k} \tag{13}
\end{equation*}
$$

with

$$
\delta_{k}= \begin{cases}n_{k}-c & \text { if } n_{k}>c \tag{14}\\ 0 & \text { otherwise }\end{cases}
$$

The minimum (min), maximum (max) and average (\bar{n}) numbers of SSUs sampled per department were approximated by applying the sampling design many times with $m=285$ and $n=285 \times 15=4275$ (Table 5). The value of \bar{n} varied greatly between departments for three reasons: (i) their surface area varied (Table 2), (ii) their boundaries were independent of the spatial sampling frame (Fig. 6), and consequently, (iii) the number of SSUs in departments varied greatly. For example, the lowest value ($\bar{n}=1.57$) was obtained for department $k=75$, which corresponds to Paris, the capital city of France (see Table 2). As might be expected, some departments had a significantly higher weight than others in the overall sample, such as Ain $(k=01)$, Aisne $(k=02)$, Somme $(k=80)$, and Vendée $(k=85)$, because they have many favorable habitats and therefore contain many SSUs and are species-rich.

Table 5: Statistical summaries for 10^{6} replications of the sampling design with $m=285$ and $n=4275$, 15 SSUs per PSU from the first-stage sample, and $c=80$. Minimum (min), maximum (max) and average (\bar{n}) numbers of SSUs per department (k). Details are provided in the text.

k	\min	\max	\bar{n}	k	\min	\max	\bar{n}	k	\min	\max	\bar{n}
01	30	274	117.36	32	0	176	38.33	64	0	177	36.60
02	15	263	96.80	33	0	262	78.49	65	0	112	15.49
03	0	258	75.72	34	0	204	51.96	66	0	135	22.84
04	0	162	33.17	35	0	242	66.50	67	0	225	61.30
05	0	125	19.94	36	0	268	83.99	68	0	191	47.51
06	0	103	14.37	37	0	246	75.59	69	0	84	13.42
07	0	125	22.10	38	0	201	50.02	70	0	196	47.34
08	0	181	38.46	39	0	188	49.42	71	0	280	90.65
09	0	118	14.03	40	0	187	47.86	72	0	190	44.55
10	0	163	39.57	41	0	297	94.15	73	0	142	24.17
11	0	208	40.02	42	15	165	48.64	74	0	155	30.22
12	0	165	27.93	43	0	119	18.62	75	0	25	1.57
13	0	234	86.21	44	0	290	103.55	76	0	139	29.60
14	0	175	30.90	45	0	271	82.05	77	0	187	51.06
15	0	138	25.96	46	0	99	12.73	78	0	138	29.15
16	0	144	29.19	47	0	173	36.05	79	0	183	44.20
17	0	281	97.81	48	0	99	13.24	80	30	265	111.10
18	0	226	63.25	49	0	279	92.32	81	0	169	34.12
19	0	165	34.21	50	0	150	35.00	82	0	146	25.98
2 A	0	90	10.71	51	0	213	61.03	83	0	105	12.82
$2 B$	0	105	18.85	52	0	108	15.77	84	0	99	14.76
21	0	197	52.75	53	0	197	46.75	85	0	308	108.82
22	0	144	24.61	54	0	196	48.14	86	0	227	68.54
23	0	187	40.04	55	0	239	59.21	87	0	193	47.27
24	0	198	48.27	56	0	236	73.50	88	0	132	23.03
25	0	201	47.77	57	0	266	78.13	89	0	175	45.48
26	0	155	28.14	58	0	187	49.19	90	0	82	12.97
27	0	160	47.65	59	0	253	93.21	91	0	112	17.48
28	0	145	24.74	60	0	163	44.06	92	0	38	3.58
29	0	180	41.33	61	0	104	16.01	93	0	36	3.52
30	0	179	45.59	62	10	212	73.22	94	0	40	4.49
31	0	166	33.93	63	0	163	33.09	95	0	80	10.20

Of the 10^{6} samples generated by the sampling design, the best one - in terms of meeting the logistical constraint - yielded the results in Table 6. In practice, it was expected that only 2850 SSUs
would be surveyed (the additional $285 \times 5=1425$ SSUs are those of the reserve due to possible unit nonresponse), so the constraint was largely met.

For some departments, it was not possible to obtain $\delta=0$ because of their important weight in the overall sample, for example, in the case of Ain $(k=01)$, Somme $(k=80)$ or Vendée $(k=85)$ (Table 6). Conversely, for mountainous - e.g., Ariège $(k=09)$, Corse-du-Sud $(k=2 \mathrm{~A})$, Haute-Loire $(k=43)$ - or highly anthropized departments - e.g., Seine-St-Denis $(k=93)$, Val-de-Marne $(k=94)$, both in the Paris region - the n-value was zero or close to zero.

Table 6: Distribution of the number of SSUs (n) per department (k) for the sample that best satisfies the logistical constraint, that is, minimizes the sample score (sum of the δ-values). Results obtained for 10^{6} replications of the sampling design with $m=285$ and $n=4275$, 15 SSUs per PSU from the first-stage sample, and $c=80$. Details are provided in the text.

k	n	δ	k	n	δ	k	n	δ
01	98	18	32	0	0	64	78	0
02	65	0	33	53	0	65	30	0
03	86	6	34	53	0	66	0	0
04	60	0	35	45	0	67	75	0
05	30	0	36	75	0	68	90	10
06	15	0	37	59	0	69	0	0
07	55	0	38	29	0	70	75	0
08	15	0	39	16	0	71	68	0
09	0	0	40	87	7	72	53	0
10	77	0	41	80	0	73	37	0
11	37	0	42	58	0	74	21	0
12	53	0	43	0	0	75	4	0
13	57	0	44	87	7	76	30	0
14	15	0	45	82	2	77	52	0
15	21	0	46	10	0	78	44	0
16	19	0	47	34	0	79	46	0
17	45	0	48	0	0	80	94	14
18	48	0	49	83	3	81	52	0
19	30	0	50	45	0	82	40	0
2 A	0	0	51	58	0	83	0	0
$2 B$	45	0	52	15	0	84	20	0
21	59	0	53	66	0	85	100	20
22	30	0	54	35	0	86	59	0
23	45	0	55	75	0	87	57	0
24	37	0	56	45	0	88	40	0
25	46	0	57	75	0	89	46	0
26	21	0	58	37	0	90	44	0
27	45	0	59	67	0	91	23	0
28	60	0	60	41	0	92	8	0
29	90	10	61	15	0	93	0	0
30	43	0	62	53	0	94	0	0
31	75	0	63	45	0	95	44	0

5. Discussion

In this article, we illustrated the implementation of a stratified two-stage sampling design for a multispecies survey concerning 25 waterbird species in European France (LIMAT scheme). The sampling design was based on three spatially nested levels: (i) a level of strata of PSUs defined such as to maximize the average probability that a sample of PSUs drawn by stratified random sampling without replacement (STR-SRSWOR) covers the species distributions in European France, (ii) the units to be sampled at the first stage (PSUs), i.e., $10 \mathrm{~km} \times 10 \mathrm{~km}$ grid cells, and (iii) the units to be sampled at the second stage (SSUs), defined as $500 \mathrm{~m} \times 500 \mathrm{~m}$ grid cells, to carry out field observations.

The knowledge available prior to the start of this survey was the spatial distribution data from the French Birds Atlas and Faune-France web portal, which documented the recorded presence of the species in the cells of a $10 \mathrm{~km} \times 10 \mathrm{~km}$ grid. This grid is one of those officially used in European France for the National Inventory of Natural Heritage - in French, Inventaire National du Patrimoine Naturel (INPN, see https://inpn.mnhn.fr/accueil/index?lg=en). Note that this grid resolution also exists on the European scale but that the INPN grid does not coincide with that of the European Environment Agency (EEA reference grid, https://www.eea.europa.eu/data-and-maps/ data/eea-reference-grids-2). It was quite natural to choose the grid used by the French Birds Atlas to define the LIMAT sampling frame of PSUs. Other examples of this practice may be found in the literature. For instance, in the United Kingdom, where bird counting and monitoring programs have a long tradition, Donald and Evans (1995) used nested sampling units within larger units defined by the Atlas of Breeding Birds (Gibbons et al., 1993). The use of the grid referenced by an atlas to define PSUs for subsequent abundance estimation is a recent development in atlas production (see, for example, Gibbons et al., 2007; Aizpurua et al., 2015; McCabe et al., 2018). We can therefore see a link, or even a convergence, between atlas production and monitoring programs.

It has been suggested that atlas data " $[\cdots]$ can be used to stratify survey sites and so concentrate observer effort in areas where most species occurs, and minimize effort outside that range." (Donald and Fuller, 1998), but to date, a formalization of this proposal has never been published. Therefore, the present article fills a methodological gap in the framework of probability sampling applied to multispecies surveys. The methodological proposal developed in this article (Sec. 3) corresponds to what Foster et al. (2020, p. 32) call "combined usefulness", i.e., "the combined utility of each sampling [unit] to each component of the multivariate observation", the multivariate nature of the survey here being due to the multispecies coordination of the sampling effort. This approach can be a source of inspiration for ecologists or wildlife biologists in charge of multispecies surveys.

For bird surveys, the stratified two-stage sampling design that we propose here is unprecedented at the national level in European France and, to our knowledge, it is also unprecedented at the European level. In North America, examples of stratified multistage sampling designs exist for bird monitoring (e.g., Johnson et al., 2009; Pavlacky et al., 2017; Van Wilgenburg et al., 2020). An example of a recent program is the Integrated Monitoring in Bird Conservation Regions (IMBCR) (Pavlacky et al., 2017). The goal of the IMBCR is " $[\cdots]$ to provide a statistical foundation for reliable knowledge about bird populations with the ability to address management and conservation objectives at multiple spatial scales" (Pavlacky et al., 2017). Since 2015, this monitoring program has covered the states of Colorado, Montana, Wyoming, and parts of Arizona, Idaho, Kansas, Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas and Utah. At the first level of stratification, the strata result from the Cartesian product of the bird conservation regions (BCRs) and the states, defining what Pavlacky et al. (2017) called BCR-by-state regions. At the second level, each BCR-by-state region is stratified according to stakeholder areas of interest, local needs and conservation goals. The PSUs are defined as $1 \mathrm{~km} \times 1 \mathrm{~km}$ grid cells. Within each PSU, 16 SSUs are defined by points 250 m apart and 125 m from the PSU boundary (see Pavlacky et al., 2017, Fig .2). Another recent example is provided by Van Wilgenburg et al. (2020) in the boreal region of Canada with the Boreal Optimal Sampling Strategy (BOSS). The BOSS was designed to monitor boreal birds for changes in population size and distribution using a stratified multistage sampling approach that incorporates habitat stratification, cost constraints, and optimization. In the BOSS, the PSUs are defined as hexagonal grid cells 5 km in diameter (i.e., a PSU is a hexagon circumscribed by a circle 5 km in diameter), while the SSUs were defined by a grid of points 300 m apart (see Van Wilgenburg et al., 2020 for more details).

It is possible that there is publication bias and that sampling designs (in the statistical sense of probability sampling plans) are rarely described in the ecological literature or are not the subject of methodological articles. Regardless of whether they are rarely used or rarely published, we found few reports of large-scale sampling designs for multispecies surveys. Note that the situation is quite different for environmental monitoring and natural resource surveys (see Gregoire and Valentine, 2008), especially for forest inventories where complex sampling designs are not uncommon (e.g., Fattorini,

2015, and references cited therein; Vallée et al., 2015) and for which very good books are available (e.g., Schreuder et al., 1993; Mandallaz, 2008).

5.1. Using stratified two-stage sampling

One of the most basic sampling designs is simple random sampling without replacement (SRSWOR). The qualifier simple does not mean that it is elementary but that the selection probabilities are equal (Tillé, 2020, p. 27). With SRSWOR, the ultimate units are irregularly scattered over the sampled spatial domain. Therefore, SRSWOR is not practical for large-scale surveys due to the cost of transporting observers from one unit to another. One solution is to aggregate the sampled ultimate units into groups that are distributed across the spatial domain of interest. This is usually done by two-stage sampling. Oddly enough - and in agreement with McDonald (2012) — two-stage sampling is still relatively rare in ecology even though Conroy and Smith (1994) consider that "surveys of wildlife populations $[\cdots]$ are inherently multi-stage in design". Note that in ecological and wildlife statistics, other terms are sometimes used to refer to multistage sampling, namely, multilevel sampling (e.g., Greenwood and Robinson, 2006b) or hierarchical nested sampling (e.g., Skalski, 2012), terms that should be reserved for statistical modeling and variance component estimation.

It is widely recognized that stratified multistage sampling is the most common type of design in large-scale surveys (e.g., Sampford, 1962, Preface; Stuart, 1984, p. 78; Singh and Chaudhary, 1986, p. 233; Lohr, 2010, p. 282). This type of design is important enough to have its own entry in the famous Encyclopedia of Statistical Sciences (see Jain and Hausman, 2006). Moreover, it is one of the most common designs in federal survey programs in the USA (Nusser et al., 1998) and has been used, for instance, for the National Resources Inventory (NRI) (Nusser and Goebel, 1997; Nusser et al., 1998).

The first reason for using a stratified two-stage sampling design is that it combines the advantages of both stratification and multistage sampling in terms of efficiency and costs. A second reason, specific to stratified sampling, is that it allows estimates to be computed directly at the level of strata (e.g., ecoregions, conservation regions, etc.) without the complications of estimating parameters for unplanned subdomains (e.g., Rao, 2003). A third reason, specific to two-stage sampling, is the possibility of defining the frame of SSUs only for the PSUs selected at the first stage (e.g., Johnson et al., 2009), which can represent a considerable economy in terms of preparatory work.

For the LIMAT scheme, the choice of a two-stage stratified sampling design was driven primarily by the need to reduce transportation costs while collecting observations for a maximum number of species - through the sampling allocation rule and the strata optimization - and avoiding major sources of bias in the parameter estimation. In the LIMAT scheme, stratification of the PSUs is central to the multispecies nature of the survey.

5.1.1. Optimizing the stratification

Beyond the classical applications of sampling designs, there are applications that must be invented to meet the needs of a multispecies survey, depending on the objectives, relevant presurvey data and logistical constraints.

In this article, we considered a situation where only the presence of the species in the PSUs was known, but no data were available to anticipate the precision of the estimators. Consequently, the stratification optimization has little to do with what is found in the survey sampling literature, which is essentially concerned with maximizing the precision of the estimators - i.e., minimizing their sampling variance - according to the frequency distribution of the variable of interest. In the case of linear estimators such as the total or mean estimator, maximizing the precision is achieved by minimizing the within-stratum variability for a given number of strata. This defines the objective function to be optimized. Of course, for other finite population parameter estimators, the objective function may be different (Tillé, 2020, Sec. 4.6), for instance, in the case of a quadratic parameter such as the finite population variance. Furthermore, the optimization method to be used depends on both the available knowledge and the number of variables of interest.

Here, we propose to optimize a criterion defined as the average sampling coverage probability of species distributions. It is the use of this criterion and the number of species occurring in the PSUs as a size variable that makes the proposed sampling design a multispecies-oriented approach. Other criteria - based, for example, on the variance/covariance or on a diversity measure - are conceivable, but their practical usefulness remains to be evaluated.

In the case of the sampling design we used at the first sampling stage (STR-SRSWOR), the criterion to be optimized can be calculated exactly. As mentioned in Section 3.1, it is always possible to use a Monte Carlo approach to estimate the criterion and thus be able to compare different sampling designs used at the first sampling stage, even the most complex ones.

The usual methods for optimizing a stratification (see, for instance, Tillé, 2020, Sec. 4.10.2, and references cited therein) are not relevant in the present article since the goal is to maximize the average sampling coverage probability of species distributions, not the between-strata variability. Due to the uniqueness of the size variable considered in this article (univariate case) and the very moderate number of distinct stratifications to be examined for $L=22$ and $H=5$, there is no difficulty in finding an optimal stratification by complete enumeration (see Aubry, 2023b).

In general, the problem of stratification optimization requires some familiarity with algorithms, whereas most ecologists - even quantitative ones - usually combine already programmed computer procedures (they rarely start completely from scratch). It is therefore necessary to extend the available toolbox. For ease of computer implementation, the necessary basic algorithms can be found in Section 3.3.3 of this article and in Aubry (2023b) for the full search algorithm we relied on.

Note that it is not impossible that the proposed stratification - in addition to optimizing the coverage probability criterion - could increase the precision of estimation. Indeed, we overrepresented the most species-rich PSUs in the sample, so if there is a nonnegligible correlation between the number of species and the abundance of individuals, at least for some species (as it is reasonable to assume), then we would have increased the precision of the estimation as well. In particular, the use of a take-all stratum for the richest PSUs may be advantageous in that the sample units in that stratum do not contribute to the sampling variance. As far as the LIMAT scheme is concerned, this remains to be verified once the data are compiled, and this will be discussed in a future article.

5.1.2. Optimizing the sample size allocation

In this article, the allocation rule was specified first (Section 3.3.2), and then the stratification was optimized (Section 3.3.3). Conversely, if the strata are given first, then the goal is to optimize the allocation of sampling effort according to a specific rule.

The classical literature on survey sampling mostly deals with univariate single objective situations (e.g., Särndal et al., 1992, Sec. 3.7.3; Hankin et al., 2019; Tillé, 2020, pp. 71-75), whereas multispecies surveys deal with multivariate and usually multiobjective situations. Again, the appropriate approach for optimizing the sampling effort allocation depends on the presurvey data available and the objectives of the survey. If available, species richness must be included among the design components considered, and the allocation of sampling effort should be consistent with it. When both species richness and within-stratum variances (or only proxies for these variances, e.g., Van Wilgenburg et al., 2020) are available, they can be used in combination to achieve an appropriate sample size allocation. A different perspective may be to consider the spatial distribution of observers and to allocate the overall sampling effort according to the observer density within strata, as in the British Breeding Bird Survey (Gregory and Baillie, 1994; Gregory, 2000; Gregory et al., 2004).

Multispecies surveys are not only multivariate and generally multiobjective but are also often multiscale (e.g., Pavlacky et al., 2017; Van Wilgenburg et al., 2020), a feature that can be supported by nesting strata and/or sampling units within each other. When more than one sampling stage is involved in the design, one can also address the allocation of the sampling effort across the different stages. At the present state of our knowledge and skills, we can make four observations: (i) the question of optimizing the sampling effort allocation in a multivariate and/or, multiobjective and/or multiscale situation faces contradictions that can undermine all efforts, i.e., the compromise finally reached is often far from the optimum for the different objectives and design components considered; (ii) the use of sophisticated optimization methods is often not required in the area of probability sampling, as simple approaches generally do not yield distinguishable results from a practical point of view; (iii) the reality of the optimization should be questioned if the data used for this purpose are not themselves sufficiently reliable or recent, and if the phenomenon under study is not stable over time or space (which is precisely what a monitoring program seeks to document); and (iv) allocation optimization leads to a design in which the ultimate sampling units are sampled with unequal overall inclusion probabilities - as is the case in this paper - which complicates the use of the collected data for analytical purposes (e.g., correlative analyses and modeling), since then, one must necessarily account for the sampling weights, which are different (the sampling weights are the inverses of the inclusion probabilities).

5.2. Investigating other possible designs

The stratified two-stage sampling design we are concerned with in this article is a particular instance of a three-stage sampling design with SRSWOR at each stage, where the units at the first stage are sampled at 100% (thus forming strata) (Sukhatme et al., 1984, p. 321; Mandallaz, 2008, p. 34; Gupta and Kabe, 2011, p. 157). This design is referred to as STSI-SI in the taxonomy proposed by Domburg et al. (1997, Table 1) (SI stands for SRSWOR and ST stands for stratified, as in Särndal
et al., 1992). According to this taxonomy, other combinations of stratified sampling and two-stage sampling are possible; for instance, considering simple random sampling, stratification may occur at the second stage of sampling, leading to what Domburg et al. (1997, Table 1) abbreviated as the SISTSI design. Stratification at both stages may also be considered. It is also possible to use more than two sampling stages, but the explicit formulation of the estimators quickly becomes very cumbersome, and an implicit formulation by recurrence is then recommended (see Aubry, 2021). Furthermore, it is important to understand that each additional stage of sampling is associated with an additional component of sampling variance. Therefore, among the multistage designs, two-stage sampling is both the simplest and the most statistically efficient. It is a reasonable trade-off between precision and travel costs, although not necessarily the most logistically efficient.

Given the situation considered in this article - and corresponding to the motivating example - where we have atlas data defined at the PSU level, the key question is whether the species-rich PSUs can be overrepresented in the sample in a way other than the one proposed in this article. One possibility that was explored in the case of the LIMAT scheme, but not finally adopted, was to select the PSUs with probabilities proportional to the size variable (here, the number of species present in the PSUs). This type of sampling design called PPSWOR (an abbreviation for probability-proportional-to-size sampling without replacement) requires algorithms that can be complex (see Brewer and Hanif, 1983; Tillé, 2006). This is not a problem as long as their computer implementation is correct (for an example, see Aubry, 2023a). The main problem with PPSWOR is the stability of the sampling variance estimator since the inclusion probabilities can vary greatly. In the present state of our knowledge and skills, we think that it is wiser to use the stratification and allocation proposed in this article, but the stability of the sampling variance estimators could be studied on fictitious examples, and it would be worthwhile to conduct such a study in depth.

While sampling designs (stratified, with unequal probability proportional to size, multistage, multiphase, balanced, etc.) can be combined in a variety of ways, it is important to keep in mind that the choices that are made must be related to the knowledge available and the objectives being pursued and that not all choices are equally relevant.

5.3. Dealing with a large-scale multispecies survey

As noted by Yates (1960, p. 5) "The prime requirement of any large-scale sample survey is $[\cdots]$ that the organization of the survey should be carried out by a person who has adequate knowledge and experience of sampling methods and their application.". Indeed, the design of a large-scale survey requires good knowledge of the methods and techniques available. Such skills seem to be relatively rare among (quantitative) ecologists, which is an impediment to the design of such surveys and their widespread use in ecology. Benefiting from the expertise of a survey statistician is usually a rare opportunity in the case of ecological surveys (for counterexamples, see Fattorini et al., 2004; Baffetta et al., 2007; Fattorini et al., 2011). Again, note that the involvement of an expert in probability sampling is much more common when financial aspects are at stake, for instance, in forestry. However, statistical expertise is not enough, as a good understanding of thematic issues and logistical constraints is also needed, as Yates (1960, p. 6) pointed out in his time. In fact, a large-scale survey is more an exercise in statistical engineering rather than in pure sampling theory (Mahalanobis, 1944, 1946). Overall, designing a probability sampling plan for surveying multiple species at the same time is a somewhat complicated statistical engineering exercise. For such an exercise, biometricians who specialize in sampling issues can provide valuable assistance.

As recently illustrated by Van Wilgenburg et al. (2020) and by the motivating example of the present article, the multiple and often competing constraints force one to make choices to reach the best possible compromise. As far as the LIMAT scheme is concerned, there is room for improvement, especially regarding the second stage sampling frame - the construction of which is not detailed as it is beyond the scope of this article - which does not sufficiently cover the habitats of the various species of interest. Moreover, the logistical constraint is accounted for at the time of sample selection, not at the design stage. If this additional selection process is not accounted for at the estimation stage, this implicitly means that it is considered unrelated to the variables of interest and can therefore be ignored without causing a biased estimation (see Aubry et al., 2020, Sec. 5.1). This aspect needs to be checked in a timely manner and with an appropriate assessment.

A multispecies survey such as the LIMAT scheme faces two main challenges: (i) mapping potential habitats at the scale of the SSUs for each species or group of species and (ii) considering different species simultaneously for spatial and temporal sampling (depending on their phenology). The first point requires a massive amount of work, which is only touched upon in the LIMAT scheme - at least in its current state. It is expected that the mapping of potential habitats will make considerable progress thanks to remote sensing, which is the only way to cover large-scale areas (e.g., Kerr and Ostrovsky,

2003; Fuller et al., 2005). This task requires close collaboration between biologists specialized in the study of the species of interest and geomatics/remote sensing engineers to bridge the gap between ecological expertise and the processing of available environmental data layers (McDermid et al., 2005). Furthermore, the development of automated habitat mapping tools based on deep learning would significantly reduce the financial and human costs of wetland habitat classification, with the advantage that it could be updated annually (e.g., Rezaee et al., 2018; Hosseiny et al., 2021; Jamali et al., 2022a,b). The second point is a thorny one, and the answer given in this article and illustrated by the case of the LIMAT scheme is a solution obtained after eliminating several avenues explored in preliminary studies. The issue of temporal sampling is beyond the scope of this article, which is devoted only to spatial sampling, but it is essential in practice.

6. Conclusions and perspectives

Given its complexity, the topic of designing a probability sampling plan for multispecies surveys is still in its infancy. The overriding goal is to collect observations for as many species as possible in a limited number of visits. To advance the topic, in this article, we have formalized the proposal that spatial sampling units should be selected to concentrate sampling effort where most species occur and minimize effort elsewhere. To achieve this goal, we proposed an optimal stratification method adapted to the overrepresentation of the most species-rich sampling units in a sample. This method is based on a complete enumeration of admissible stratifications and is therefore exact.

We have implemented and illustrated this method in the context of a real-world stratified two-stage sampling design in which primary sampling units (PSUs) are stratified according to species richness, and an allocation rule favors strata in which the PSUs are the richest. The advantage of presenting the method in the context of a real multispecies survey is to highlight both the complexity of the exercise and the practical feasibility of applying a stratified two-stage sampling design, at least for large-scale waterbird monitoring.

The methodology described in this article (Sec. 3) is not specific to the motivating example used to illustrate it. It is obviously not specific to fauna and can be used for multispecies surveys of flora or fungi. This methodology should be useful whenever an abundance-based parameter needs to be estimated, whether in a context where each species is considered independently from the others or in the case of estimating an abundance-based biodiversity index. The aim in both cases is to collect observations for as many species as possible in a limited number of visits while avoiding the biases that can arise when spatial sampling is not defined within a sound statistical framework. The question of the usefulness of this methodology for the studies of community patterns - e.g., the analysis of interspecific association, ordination and classification - remains to be examined.

To study and document the proposed approach in more detail, for the situation addressed in this article, which is based on the distribution of species among PSUs, future work could simulate cases that allow varying (i) the number of species; (ii) the shape of the frequency distribution for the species richness per PSU: (iii) the species prevalence; (iv) co-occurrence of species in the PSUs; (v) the number of strata; and so on. The aim of such a simulation study would be to identify the breaking points of the proposed approach and to provide guidelines for the design and implementation of multispecies surveys. This assumes first that the technical issues associated with such a simulation study have been adequately addressed.

In our view, a great deal of theoretical work remains to be done to examine what other possible paths might be fruitful or, on the contrary, to document why they cannot be used for multispecies surveys. To accomplish this, we could examine different theoretical situations according to what is assumed to be known. Then, in a second step, we could examine to what extent these theoretical situations are close to reality and what possible adaptations should be made to the selected approaches to apply them effectively. This is a methodological research topic in itself, the complexity of which should not be underestimated, but which should be further explored in the future.

7. Acknowledgments

We would like to dedicate this article to the memory of Thierry Point, who played a crucial role in the development of the LIMAT scheme, especially in developing the sampling frame of secondary sampling units. Unfortunately, Thierry died prematurely in April 2022.

We are grateful to Dr Joaquín Hortal and two other anonymous reviewers, as well as to Ecological Informatics' Editor-in-Chief and Associate Editor, for their insightful comments, which helped us to improve the article. We also thank American Journal Experts (AJE) for the final English language editing.

References

Aizpurua, O., Paquet, J.Y., Brotons, L., Titeux, N., 2015. Optimising long-term monitoring projects for species distribution modelling: how atlas data may help. Ecography 38, 29-40.

Albert, C.H., Yoccoz, N.G., Edwards, T.C., Graham, C.H., Zimmermann, N.E., Thuiller, W., 2010. Sampling in ecology and evolution - bridging the gap between theory and practice. Ecography 33, 1028-1037.

Amorim, F., Carvalho, S.B., Honrado, J., Rebelo, H., 2014. Designing optimized multi-species monitoring networks to detect range shifts driven by climate change: a case study with bats in the north of Portugal. PLoS ONE 9, e87291.

Ardilly, P., Tillé, Y., 2006. Sampling methods: exercises and solutions. Springer, New York, NY, USA.
Aubry, P., 2021. On the non-recursive implementation of multistage sampling without replacement. MethodsX 8, 101553.

Aubry, P., 2023a. On the correct implementation of the Hanurav-Vijayan selection procedure for unequal probability sampling without replacement. Commun. Stat. Simul. Comput. 52, 1849-1877.

Aubry, P., 2023b. On univariate optimal partitioning by complete enumeration. MethodsX 10, 102154.
Aubry, P., Francesiaz, C., 2022. On comparing design-based estimation versus model-based prediction to assess the abundance of biological populations. Ecol. Indic. 144, 109394.

Aubry, P., Guillemain, M., Sorrenti, M., 2020. Increasing the trust in hunting bag statistics: why random selection of hunters is so important. Ecol. Indic. 117, 106522.

Baffetta, F., Bacaro, G., Fattorini, L., Rocchini, D., Chiarucci, A., 2007. Multi-stage cluster sampling for estimating average species richness at different spatial grains. Community Ecol. 8, 119-127.

Barnett, V., 2002. Sample survey. Principles \& methods. Third edition. John Wiley \& Sons, Chichester, UK.

Bellhouse, D.R., 1988. A brief history of random sampling methods, in: Krishnaiah, P.R., Rao, C.R. (Eds.), Handbook of Statistics 6. Sampling. Elsevier, Amsterdam, The Netherlands, pp. 1-14.

Bethlehem, J., 2009. Applied survey methods: a statistical perspective. John Wiley \& Sons, Hoboken, NJ, USA.

Boyd, R.J., Powney, G.D., Pescott, O.L., 2023. We need to talk about nonprobability samples. Trends Ecol. Evol. 38, 521-531.

Brewer, K.R.W., Hanif, M., 1983. Sampling with unequal probabilities. Springer, New York, NY, USA.

Buckland, S.T., Baillie, S.R., Dick, J.M., Elston, D.A., Magurran, A.E., Scott, E.M., Smith, R.I., Somerfield, P.J., Studeny, P.J., Watt, A., 2012. How should regional biodiversity be monitored? Environ. Ecol. Stat. 19, 601-626.

Buckland, S.T., Marsden, S.J., Green, R.E., 2008. Estimating bird abundance: making methods work. Bird Conserv. Int. 18, S91-S108.

Buckland, S.T., Studeny, A.C., Magurran, A.E., Illian, J.B., Newson, S.E., 2011. The geometric mean of relative abundance indices: a biodiversity measure with a difference. Ecosphere 2, Article 100.

Carvalho, S.B., Gonçalves, J., Guisan, A., Honrado, J.P., 2016. Systematic site selection for multispecies monitoring networks. J. Appl. Ecol. 53, 1305-1316.

Cochran, W.G., 1977. Sampling techniques. Third edition. John Wiley \& Sons, New York, NY, USA.
Conroy, M.J., Smith, D.R., 1994. Designing large-scale surveys of wildlife abundance and diversity using statistical sampling principles. Trans. N. Amer. Wildl. Nat. Resour. Conf. 59, 159-169.

Delany, S., 2010. Guidance on waterbird monitoring methodology: field protocol for waterbird counting. Technical Report. Wetlands International. Wageningen, The Netherlands.

Dénes, F.V., Silveira, L.F., Beissinger, S.R., 2015. Estimating abundance of unmarked animal populations: accounting for imperfect detection and other sources of zero inflation. Methods Ecol. Evol. $6,543-556$.

DeWan, A.A., Zipkin, E.F., 2010. An integrated sampling and analysis approach for improved biodiversity monitoring. Environ. Manage. 45, 1223-1230.

Domburg, P., De Gruijter, J.J., Van Beek, P., 1997. Designing efficient soil survey schemes with a knowledge-based system using dynamic programming. Geoderma 75, 183-201.

Donald, P.F., Evans, A.D., 1995. Habitat selection and population size of Corn Buntings Miliaria calandra breeding in Britain in 1993. Bird Study 42, 190-204.

Donald, P.F., Fuller, R.J., 1998. Ornithological atlas data: a review of uses and limitations. Bird Study 45, 129-145.

Dunn, A.M., Weston, M.A., 2008. A review of terrestrial bird atlases of the world and their application. Emu 108, 42-67.

European Environment Agency, 2020. State of nature in the EU. Results from reporting under the nature directives 2013-2018. Publications Office of the European Union, Luxembourg.

Fattorini, L., 2015. Design-based methodological advances to support national forest inventories: a review of recent proposals. iForest 8, 6-11.

Fattorini, L., Ferretti, F., Pisani, C., Sforzi, A., 2011. Two-stage estimation of ungulate abundance in Mediterranean areas using pellet group count. Environ. Ecol. Stat. 18, 291-314.

Fattorini, L., Pisani, C., Sforzi, A., 2004. The estimation of wildlife ungulate abundance using sample area surveys: an application to Maremma Regional Park. Stat. Methods Appl. 13, 197-212.

Foster, S.D., Monk, J., Lawrence, E., Hayes, K.R., Hosack, G.R., Langlois, T., Hooper, G., Przeslawski, R., 2020. Statistical considerations for monitoring and sampling, in: Przeslawski, R., Foster, S. (Eds.), Field manuals for marine sampling to monitor Australian waters. Version 2. Geoscience Australia and CSIRO, Canberra, Australia, pp. 26-49.

Fuller, R.M., Devereux, B.J., Gillings, S., Amable, G.S., Hill, R.A., 2005. Indices of bird-habitat preference from field surveys of birds and remote sensing of land cover: a study of south-eastern England with wider implications for conservation and biodiversity assessment. Glob. Ecol. Biogeogr. 14, 223-239.

Gibbons, D.W., Donald, P.F., Bauer, H.G., Fornasari, L., Dawson, I.K., 2007. Mapping avian distributions: the evolution of bird atlases. Bird Study 54, 324-334.

Gibbons, D.W., Reid, J.B., Chapman, R.A., 1993. The new atlas of breeding birds in Britain and Ireland, 1988-1991. Poyser, London, UK.

Greenwood, J.J.D., Robinson, R.A., 2006a. General census methods, in: Sutherland, W.J. (Ed.), Ecological census techniques. Second edition. Cambridge University Press, Cambridge, UK, pp. 87185.

Greenwood, J.J.D., Robinson, R.A., 2006b. Principles of sampling, in: Sutherland, W.J. (Ed.), Ecological census techniques. Second edition. Cambridge University Press, Cambridge, UK, pp. 11-86.

Gregoire, T.G., Valentine, H.T., 2008. Sampling strategies for natural resources and the environment. Chapman \& Hall/CRC, Boca Raton, FL, USA.

Gregory, R.D., 2000. Development of breeding bird monitoring in the United Kingdom and adopting its principles elsewhere. The Ring 22, 35-44.

Gregory, R.D., Baillie, S.R., 1994. Evaluation of sampling strategies for 1-km squares for inclusion in the Breeding Bird Survey. BTO Research Report No. 139. British Trust for Ornithology, Thetford, UK.

Gregory, R.D., Baillie, S.R., Bashford, R.I., 2004. Monitoring breeding birds in the united kingdom, in: Anselin, A. (Ed.), Bird Numbers 1995, Proceedings of the International Conference and 13 th Meeting of the European Bird Census Council, pp. 101-112.

Gregory, R.D., Greenwood, J.J.D., 2008. Counting common birds, in: Voříšek, P., Klvaňová, A., Wotton, S., Gregory, R.D. (Eds.), A best practice guide for wild bird monitoring schemes. First edition. CSO/RSPB, Prague, Czech Republic, pp. 21-86.

Gupta, A.K., Kabe, D.G., 2011. Theory of sample surveys. World Scientific, Singapore.
Hankin, D.G., Mohr, M.S., Newman, K.B., 2019. Sampling theory for the ecological and natural resource sciences. Oxford University Press, Oxford, UK.

Hedayat, A.S., Sinha, B.K., 1991. Design and inference in finite population sampling. John Wiley \& Sons, New York, NY, USA.

Hewitt, J.E., Thrush, S.F., Dayton, P.K., Bonsdorf, E., 2007. The effect of spatial and temporal heterogeneity on the design and analysis of empirical studies of scale-dependent systems. Am. Nat. 169, 398-408.

Hewitt, J.E., Thrush, S.F., Lundquist, C., 2017. Scale-dependence in ecological systems, in: eLS. John Wiley \& Sons, Chichester, UK.

Hidiroglou, M., Lavallée, P., 2009. Sampling and estimation in business surveys, in: Pfeffermann, D., Rao, C.R. (Eds.), Handbook of statistics 29A. Sample surveys: design, methods and applications. Elsevier, Oxford, UK, pp. 441-470.

Hill, M.O., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427-432.

Hosseiny, B., Mahdianpari, M., Brisco, B., Mohammadimanesh, F., Salehi, B., 2021. WetNet: a spatialtemporal ensemble deep learning model for wetland classification using Sentinel-1 and Sentinel-2. IEEE Trans. Geosci. Remote Sens. 60, 4406014.

International BirdLife, 2021. European Red List of Birds. Publications Office of the European Union, Luxembourg.

Issa, N., Muller, Y., 2015. Atlas des oiseaux de France métropolitaine. Nidification et présence hivernale. Delachaux et Niestlé, Paris, France.

IUCN, 2022. The IUCN Red List of Threatened Species. URL: https://www.iucnredlist.org.
Jain, A.K., Hausman, R.E., 2006. Stratified multistage sampling, in: Kotz, S., Balakrishnan, N., Read, C.B., Vidakovic, B., Johnson, N.L. (Eds.), Encyclopedia of statistical sciences. Second edition. John Wiley \& Sons, Hoboken, NJ, USA. volume 13, pp. 8333-8337.

Jamali, A., Mahdianpari, M., Brisco, B., Mao, D., Salehi, B., Mohammadimanesh, F., 2022a. 3DUNetGSFormer: a deep learning pipeline for complex wetland mapping using generative adversarial networks and Swin transformer. Ecol. Inform. 72, 101904.

Jamali, A., Mahdianpari, M., Mohammadimanesh, F., Homayouni, S., 2022b. A deep learning framework based on generative adversarial networks and vision transformer for complex wetland classification using limited training samples. Int. J. Appl. Earth Obs. Geoinf. 115, 103095.

Johnson, D.H., Gibbs, J.P., Herzog, M., Lor, S., Niemuth, N.D., Ribic, C.A., Seamans, M., Shaffer, T.L., Shriver, W.G., Stehman, S.V., Thompson, W.L., 2009. A sampling design framework for monitoring secretive marshbirds. Waterbirds 32, 203-362.

Keddy, P.A., Laughlin, D.C., 2022. A framework for community ecology. Species pools, filters and traits. Cambridge University Press, Cambridge, UK.

Kerr, J.T., Ostrovsky, M., 2003. From space to species: ecological applications for remote sensing. Trends Ecol. Evol. 18, 299-305.

Klibansky, N., Shertzer, K.W., Kellison, G.T., Bacheler, N.M., 2017. Can subsets of species indicate overall patterns in biodiversity? Ecosphere 8, e01842.

Lambeck, R.J., 1997. Focal species: a multi-species umbrella for nature conservation. Conserv. Biol. 11, 849-856.

Lancia, R.A., Nichols, J.D., Pollock, K.H., 1996. Estimating the number of animals in wildlife populations, in: Bookhout, T.A. (Ed.), Research and management techniques for wildlife and habitats. Fifth ed., rev.. The Wildlife Society, Bethesda, MD, USA, pp. 215-253.

Legendre, P., Troussellier, M., Jarry, V., Fortin, M.J., 1989. Design for simultaneous sampling of ecological variables: from concepts to numerical solutions. Oikos 55, 30-42.

Link, W.A., Nichols, J.D., 1994. On the importance of sampling variance to investigations of temporal variation in animal population size. Oikos 69, 539-544.

Lloyd, H., Cahill, A., Jones, M., Marsden, S., 1998. Estimating bird densities using distance sampling, in: Bibby, C., Jones, M., Marsden, S. (Eds.), Expedition field techniques. Bird surveys. Expedition Advisory Centre of the Royal Geographical Society, London, UK, pp. 35-52.

Lohr, S.L., 2010. Sampling: design and analysis. Second edition. Brooks/Cole, Boston, MA, USA.
Magurran, A.E., 2004. Measuring biological diversity. Blackwell Science, Oxford, UK.
Mahalanobis, P.C., 1944. On large-scale sample surveys. Philos. Trans. R. Soc. Lond. B Biol. Sci 231, 329-451.

Mahalanobis, P.C., 1946. Recent experiments in statistical sampling in the Indian Statistical Institute (with discussion). J. R. Stat. Soc. Ser. A Stat. Soc. 109, 326-378.

Mandallaz, D., 2008. Sampling techniques for forest inventories. Chapman \& Hall/CRC, Boca Raton, Florida, USA.

Manley, P.N., Zielinski, W.J., Schlesinger, M.D., Mori, S.R., 2004. Evaluation of a multiple-species approach to monitoring species at the ecoregional scale. Ecol. Appl. 14, 296-310.

Marta, S., Lacasella, F., Romano, A., Ficetola, G.F., 2019. Cost-effective spatial sampling designs for field surveys of species distribution. Biodivers. Conserv. 28, 2891-2908.

McCabe, J.D., Anich, N.M., Brady, R.S., Zuckerberg, B., 2018. Raising the bar for the next generation of biological atlases: using existing data to inform the design and implementation of atlas monitoring. Ibis 160, 528-541.

McDermid, G.J., Franklin, S.E., LeDrew, E.F., 2005. Remote sensing for large-area habitat mapping. Prog. Phys. Geogr. 29, 449-474.

McDonald, T., 2012. Spatial sampling designs for long-term ecological monitoring, in: Gitzen, R.A., Millspaugh, J.J., Cooper, A.B., Licht, D.S. (Eds.), Design and analysis of long-term ecological monitoring studies. Cambridge University Press, New York, NY, USA, pp. 101-125.

Morin, P.J., 2011. Community ecology. Second edition. John Wiley \& Sons, Chichester, UK.
Nagy, S., Langendoen, T., 2021. Report on the conservation status of migratory waterbirds in the agreement area. Eighth edition. Technical Report. Wetlands International. Wageningen, The Netherlands.

Nguyen, H.T., 2006. An introduction to random sets. Chapman \& Hall/CRC, Boca Raton, FL, USA.
Nusser, S.M., Breidt, F.J., Fuller, W.A., 1998. Design and estimation for investigating the dynamics of natural resources. Ecol. Appl. 8, 234-245.

Nusser, S.M., Goebel, J.J., 1997. The National Resources Inventory: a long-term multi-resource monitoring programme. Environ. Ecol. Stat. 4, 181-204.

Olsen, A.R., Sedransk, J., Edwards, D., Gotway, C., Liggett, W., Rathbun, S., Reckhow, K.H., Young, L.J., 1999. Statistical issues for monitoring ecological and natural resources in the United States. Environ. Monit. Assess. 54, 1-45.

Patil, G., Taillie, C., 1982. Diversity as a concept and its measurement. J. Am. Stat. Assoc. 77, 548-561.

Pavlacky, D.C., Lukacs, P.M., Blakesley, J., Skorkowsky, R., Klute, D.S., Hahn, B., Dreitz, V.J., George, T.L., Hanni, D.J., 2017. A statistically rigorous sampling design to integrate avian monitoring and management within Bird Conservation Regions. PLoS ONE 12, e0185924.

Pollock, K.H., Nichols, J.D., Simons, T.R., Farnsworth, G.L., Bailey, L.L., Sauer, J.R., 2002. Large scale wildlife monitoring studies: statistical methods for design and analysis. Environmetrics 13, 105-119.

Rao, J.N.K., 2003. Small area estimation. John Wiley \& Sons, Hoboken, NJ, USA.
Rezaee, M., Mahdianpari, M., Zhang, Y., Salehi, B., 2018. Deep convolutional neural network for complex wetland classification using optical remote sensing imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11, 3030-3039.

Royall, R.M., 2006. Finite populations, sampling from, in: Kotz, S., Balakrishnan, N., Read, C.B., Vidakovic, B., Johnson, N.L. (Eds.), Encyclopedia of statistical sciences. Second edition. John Wiley \& Sons, Hoboken, NJ, USA, pp. 2329-2334.

Sampford, M.R., 1962. An introduction to sampling theory: with applications to agriculture. Oliver \& Boyd, Edinburgh, UK.

Samuel, M.D., Garton, E.O., 1994. Horvitz-Thompson survey sample methods for estimating largescale animal abundance. Trans. N. Amer. Wildl. Nat. Resour. Conf. 59, 170-179.

Särndal, C.E., Swensson, B., Wretman, J.H., 1992. Model assisted survey sampling. Springer, New York, NY, USA.

Schneider, D.C., 1994. Quantitative ecology. Spatial and temporal scaling. Academic Press, San Diego, CA, USA.

Schneider, D.C., 2009. Quantitative ecology. Measurement, models, and scaling. Second edition. Academic Press, London, UK.

Schreuder, H.T., Gregoire, T.G., Wood, G.B., 1993. Sampling methods for multiresource forest inventory. John Wiley \& Sons, New York, NY, USA.

Singh, D., Chaudhary, F.S., 1986. Theory and analysis of sample survey designs. New Age International Publishers, New Delhi, India.

Skalski, J.R., 2012. Estimating variance components and related parameters when planning long-term monitoring programs, in: Gitzen, R.A., Millspaugh, J.J., Cooper, A.B., Licht, D.S. (Eds.), Design and analysis of long-term ecological monitoring studies. Cambridge University Press, New York, NY, USA, pp. 174-199.

Smith, A.N.H., Anderson, M.J., Pawley, M.D.M., 2017. Could ecologists be more random? Straightforward alternatives to haphazard spatial sampling. Ecography 40, 1251-1255.

Steele, J.H., 1991. Can ecological theory cross the land-sea boundary? J. Theor. Biol. 153, 425-436.
Stuart, A., 1984. The ideas of sampling. Third edition. Charles Griffin, London, UK.
Sukhatme, P.V., Sukhatme, B.V., Sukhatme, S., Asok, C., 1984. Sampling theory of surveys with applications. Third edition. Iowa State University Press, Ames, IA, USA.

Sutherland, W.J., Freckleton, R.P., Godfray, H.C.J., Beissinger, S.R., Benton, T., Cameron, D.D., Carmel, Y., Coomes, D.A., Coulson, T., Emmerson, M.C., Hails, R.S., Hays, G.C., Hodgson, D.J., Hutchings, M.J., Johnson, D., Jones, J.P.G., Keeling, M.J., Kokko, H., Kunin, W.E., Lambin, X., Lewis, O.T., Malhi, Y., Mieszkowska, N., Milner-Gulland, E.J., Norris, K., Phillimore, A.B., Purves, D.W., Reid, J.M., Reuman, D.C., Thompson, K., Travis, J.M.J., Turnbull, L.A., Wardle, D.A., Wiegand, T., 2013. Identification of 100 fundamental ecological questions. J. Ecol. 101, 58-67.

Tillé, Y., 2006. Sampling algorithms. Springer, New York, NY, USA.
Tillé, Y., 2020. Sampling and estimation from finite populations. John Wiley \& Sons, Hoboken, NY, USA.

UICN France, MNHN, LPO, SEOF \& ONCFS, 2016. La Liste rouge des espèces menacées en France Chapitre Oiseaux de France métropolitaine. UICN France, MNHN, LPO, SEOF \& ONCFS, Paris, France.

Vallée, A.-A., Ferland-Raymond, B., Rivest, L.-P., Tillé, Y., 2015. Incorporating spatial and operational constraints in the sampling designs for forest inventories. Environmetrics 26, 557-570.

Van Turnhout, C.A.M., Willems, F., Plate, C., Van Strien, A., Teunissen, W., Van Dijk, A., Foppen, R., 2008. Monitoring common and scarce breeding birds in the Netherlands: applying a posthoc stratification and weighting procedure to obtain less biased population trends. Rev. Catalana Ornitol. 24, 15-29.

Van Wilgenburg, S.L., Mahon, C.L., Campbell, G., McLeod, L., Campbell, M., Evans, D., Easton, W., Francis, C.M., Haché, S., Machtans, C.S., Mader, C., Pankratz, R.F., Russell, R., Smith, A.C., Thomas, P., Toms, J.D., Tremblay, J.A., 2020. A cost efficient spatially balanced hierarchical sampling design for monitoring boreal birds incorporating access costs and habitat stratification. Plos ONE 15, e0234494.

Waite, S., 2000. Statistical ecology in practice: a guide to analysing environmental and ecological field data. Pearson Education, Harlow, UK.

Whittaker, R.J., Willis, K.J., Field, R., 2001. Scale and species richness: towards a general, hierarchical theory of species diversity. J. Biogeogr. 28, 453-470.

Wiens, J.A., 1989. Spatial scaling in ecology. Funct. Ecol. 3, 385-397.
Wiens, J.A., Hayward, G.D., Holthausen, R.S., Wisdom, M.J., 2008. Using surrogate species and groups for conservation planning and management. BioScience 58, 241-252.

Yates, F., 1960. Sampling methods for censuses and surveys. Third edition. Charles Griffin, London, UK.

Young, L., Young, J., 1998. Statistical ecology. A population perspective. Springer, New York, NY, USA.

[^0]: * Corresponding author

 Email addresses: philippe.aubry@ofb.gouv.fr (Philippe Aubry), gwenael.quaintenne@lpo.fr (Gwenaël Quaintenne), jeremy.dupuy@lpo.fr (Jeremy Dupuy), charlotte.francesiaz@ofb.gouv.fr (Charlotte Francesiaz), matthieu.guillemain@ofb.gouv.fr (Matthieu Guillemain), alain.caizergues@ofb.gouv.fr (Alain Caizergues)

