

#### Numerical simulations of a waterfall in a downstream basin

Laurent DAVID<sup>1</sup>,

#### Yann DEVAUX<sup>1</sup>, Ludovic CHATELLIER<sup>1</sup>, Dominique COURRET<sup>2</sup>

<sup>1</sup> Institut Pprime, CNRS-University of Poitiers-Isae Ensma, Pole Ecohydraulique OFB-IMFT-Pprime <sup>2</sup> Office Français de la Biodiversité, Pole Ecohydraulique OFB-IMFT-Pprime





#### Context of the study

Downstream migration

- Different solutions (Rutschmann et al. 2022)
- Bypass system should be attractive
- Reception zone should be safe

|                              | Concept                            | Туре                                   | Measure                         |          |  |
|------------------------------|------------------------------------|----------------------------------------|---------------------------------|----------|--|
| otection Technologies at HPP | Screening / Shielding and Guidance | Physical Barriers                      | Fine Screens                    |          |  |
|                              |                                    |                                        | Submerged Bar Screens           |          |  |
|                              |                                    |                                        | Rotary Screens                  |          |  |
|                              |                                    |                                        | Eicher-Screen                   |          |  |
|                              |                                    |                                        | Wedge-Wire-Screen               |          |  |
|                              |                                    |                                        | Barrier Nets                    |          |  |
|                              |                                    | Mechanical,<br>Behavioural<br>Barriers | Skimming Walls                  | ş        |  |
|                              |                                    |                                        | Louvers                         | 038      |  |
|                              |                                    |                                        | Bar-Racks                       | <u>Š</u> |  |
|                              |                                    |                                        | Plate Screens                   |          |  |
|                              |                                    |                                        | Trash Racks                     |          |  |
|                              |                                    | Sensory,<br>Behavioural<br>Barriers    | Light (Strobe or Mercury)       |          |  |
|                              |                                    |                                        | Low Frequency Sound             |          |  |
|                              |                                    |                                        | Popper                          |          |  |
|                              |                                    |                                        | Electricity                     |          |  |
|                              |                                    |                                        | Air- / Water Curtains           |          |  |
|                              |                                    | Collection Systems                     | Surface Collection Pipes        |          |  |
| Ъ                            |                                    |                                        | Traveling Screens               |          |  |
| Fish                         |                                    |                                        | Fish Pumps                      |          |  |
|                              |                                    |                                        | Trap and Truck                  |          |  |
|                              | Conveyance                         | Fish Friendly<br>Turbines              | Alden Turbine                   |          |  |
|                              |                                    |                                        | Voith - Minimum Gap Runner      |          |  |
|                              |                                    |                                        | Alstom - Fish Friendly Kaplan-T | urbine   |  |
|                              |                                    | Fish Friendly<br>Operation             | Early Warning Systems           |          |  |
|                              |                                    |                                        | Weir Overflow                   |          |  |
|                              |                                    |                                        | No Partial Load Operation       |          |  |
|                              |                                    |                                        |                                 |          |  |





ΙA

### Context of the study

Las Rives Hydro Power Plant





### Context of the study

• Conditions of reception in the river



Plunge pool scheme from Castillo et al. (2014)

#### Criteria used in the reception zone :

- a minimum water depth of ¼ of fall height Odeh and Orvis (1998)
- Velocity at impact < 5m/s
- Turnpenny (1998), Amaral et al. (2011)



However, these criteria integrate neither the discharge of the downstream jet, the initial velocity of the flow at the outlet of the downstream passage device, nor the shape of the jet (sheet or cylindrical) and its dimensions.

The global objective of the project is therefore to improve these reception criteria, to ensure that fish can transit without death or injury.



#### Context of the study

• Tests on the reception basin

H=3.35 m Y=0.68m < ¼ H **Criteria not validated** 





Smolts



Fish sensors



#### Results from *Bercovitz et al. (2022)*:

- Apples 69% without marks, 31% with marks
- Smolts 10% with minor injuries and 3 % with major injuries

The objective is now to improve this reception zone, to ensure that fish can transit without death or injury.

Apples



#### Main objectives

- Numerical simulations of the channel and of the waterfall with OpenFOAM
- Unsteady Reynolds Averaged Navier-Stokes (URANS) simulations, either with a Volume of Fluid or a Two-Phase flow approach (VOF/Two phases)
- Laminar or turbulence modelling
- Validation with experimental measurements





### Numerical simulation of the channel

- InterFOAM Solver
- VOF
- Model  $k-\omega_{\rm SST}$
- Wall functions







## Numerical simulation of the channel

OFFICE FRANÇAIS DE LA BIODIVERSITÉ

Université dePoitiers

- InterFOAM Solver
- VOF

**40TH IAHR** 

**ORLD CONGRESS** 

VIENNA-AUSTRIA 21-25 AUGUST 2023 RIVERS - CONNECTING MOUNTAINS AND COASTS

• Model  $k-\omega_{\rm SST}$ 

NSTITUT

CNrs

• Wall functions



**Outlet phase/velocity** 

Inlet phase/velocity

distribution for the

distribution

waterfall



OFFICE FRANÇAIS

• InterFoam + VOF

ISTITUT

Laminar, Turbulence model  $k-\omega_{\rm SST}$  or  $k-\varepsilon$ 

• Two-Phase Euler Foam

Laminar, turbulence model  $k-\varepsilon$ 

- Inlet waterfall = Outlet channel
- Wall functions at the bottom

|                        | inlet     | outlet       | wall          | atmosphere   |
|------------------------|-----------|--------------|---------------|--------------|
| Fluid fraction         | Dirichlet | Neumann      | Neumann       | inletOutlet* |
| Velocity               | Dirichlet | inletOutlet* | No slip       | inletOutlet* |
| Pressure               | Neumann   | Dirichlet    | Neumann       | Dirichlet    |
| laminar (1,2)          | Dirichlet | inletOutlet* | wall function | inletOutlet* |
| k-ω <sub>SST</sub> (1) | Dirichlet | inletOutlet* | wall function | inletOutlet* |
| k-ε (1)(2)             | Dirichlet | inletOutlet* | wall function | inletOutlet* |







• Velocity fields at the iso-surface  $\alpha_{water} = 0.9$ 



OFFICE FRANÇAIS DE LA BIODIVERSITÉ

• Velocity fields at y=0

INSTITUT

Université de Poitiers



**40TH IAHR** 

WORLD CONGRESS VIENNA-AUSTRIA 21-25 AUGUST 2023 RIVERS - CONNECTING MOUNTAINS AND COASTS

OFB

OFFICE FRANÇAIS

Intersection of the waterfall with the free surface

CITS Université

<sup>de</sup>Poitiers



**40TH IAHR** 

ORLD CONGRESS

ENNA-AUSTRIA

21–25 AUGUST 2023 RIVERS – CONNECTING MOUNTAINS AND COASTS NSTITUT

2.15 m

Flow

OFFICE FRANÇAIS DE LA BIODIVERSITÉ

Comparison with pressure measurements  ${\color{black}\bullet}$ 

Université Poitiers



**40TH IAHR** 

**ORLD CONGRESS** 

-AUSTRIA 21-25 AUGUST 2023 RIVERS – CONNECTING MOUNTAINS AND COASTS

NSTITUT

In-situ

Laminaire

k-ε

VoF

k-ε

TP





#### Conclusion

- The main objective is to revisite the reception criteria, to ensure that fish can transit without death or injury.
- Numerical simulations have been carried out to reproduce the in-situ flows, in particular the reception zone
- Comparison between two approaches (VOF and Two-Phases flows) with laminar or turbulence models ( $k-\varepsilon$  and  $k-\omega_{\rm SST}$ )
- VOF approach with a turbulence model (k-ε or k-ω<sub>SST</sub>) represents well the pressure at the bottom and the intersection with the free surface.
- This approach could be used in the future to improve the downstream basin by proposing technical solutions (increasing the water depth, moving the reception zone by adding an apendice, increasing the waterfall width, ...)



#### Thank you for your attention

• Novel developments towards sustainable hydropower. 2022. Editors P. Rutschmann, E. Kampa, C. Wolter, I. Albayrak, L. David, U. Stoltz and M. Schletterer. 223 pages, Springer Nature.