
HAL Id: hal-04541004
https://ofb.hal.science/hal-04541004

Submitted on 10 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the impact of preferential sampling on ecological
status and trend assessment

Philippe Aubry, Charlotte Francesiaz, Matthieu Guillemain

To cite this version:
Philippe Aubry, Charlotte Francesiaz, Matthieu Guillemain. On the impact of preferential sam-
pling on ecological status and trend assessment. Ecological Modelling, 2024, 492, pp.110707.
�10.1016/j.ecolmodel.2024.110707�. �hal-04541004�

https://ofb.hal.science/hal-04541004
https://hal.archives-ouvertes.fr


Graphical Abstract

On the impact of preferential sampling on ecological status and trend assessment

Philippe Aubry, Charlotte Francesiaz, Matthieu Guillemain

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Risk of  erroneous conclusion

Low Medium High

(bias of  the sample mean)

Sampling effort

Covariance

(propensity to be in the sample)

(variable of  interest)

Origin of  the bias



Highlights

On the impact of preferential sampling on ecological status and trend assessment

Philippe Aubry, Charlotte Francesiaz, Matthieu Guillemain

� Preferential sampling can be modeled by Poisson or conditional Poisson sampling.

� We document the impact of preferential sampling on population mean estimation.

� Preferential sampling can lead to biased mean estimation, if not accounted for.

� The bias increases with the covariance between sample membership and the variable.

� The bias decreases with increasing sampling effort (expected sampling fraction).
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gestion durable des espèces exploitées, La Tour du Valat, Le Sambuc, 13200 Arles, France

Abstract

Assessments of the status and trends of abiotic and biotic indicators are two central objectives in
many ecological studies and monitoring programs. Given the impracticality of making measurements
or observations at every point in geographic space, even within a limited domain, consideration of
spatial sampling is crucial to ensure the reliability of statistical inference regarding such status or
temporal trends.

The sampling units in geographic space (e.g., sites, plots, quadrats) for field observations are often
selected with a preference for those expected to be species-rich or those with the highest abundances
or occupancy probabilities. This sampling approach, called preferential sampling, can be based on
probability sampling theory, but in practice, it is usually a form of nonprobability sampling.

Introducing a selection force that disproportionately includes units in the sample based on the
expected values of the variables of interest can lead to (severely) biased inferences. This is because
inclusion probabilities — referred to here as propensities for units to be part of the sample — cannot
be accounted for in statistical estimators when they are unknown to the sampler.

In this article, we model sampling processes (considered without replacement) for a finite spatial
population of sampling units using probability sampling designs. We consider four designs: Bernoulli
sampling, Poisson sampling, simple random sampling, and conditional Poisson sampling. We docu-
ment the bias introduced by preferential sampling in the estimation of a mean, whether for a status
assessment (e.g., mean species richness) or a trend assessment (e.g., trend in mean abundance). For
this purpose, we use Monte Carlo simulations and an analytical expression for the bias of the sample
mean.

This analytical expression shows that the bias of the sample mean (1) increases with increasing
covariance between the propensities and the values of the variable of interest and (2) decreases with
increasing sampling effort (sampling fraction or expected sampling fraction). This fundamental statis-
tical result is neither widely known nor appreciated by most ecologists, even though it has the potential
to ruin status or trend assessments and to lead to erroneous conclusions.

The findings on preferential sampling in ecology presented in this article are reviewed from a
methodological perspective, mainly for an audience of quantitative ecologists, wildlife statisticians,
and biometricians involved in the design or implementation of ecological studies and monitoring pro-
grams. To facilitate future exchange among researchers on this topic by clarifying the concepts, in the
discussion we also examine the terminology found in the literature for the notions related to preferential
sampling.
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1. Introduction1

Although it has been abandoned in modern physics, the separation of space and time proves2

convenient and operational at macroscopic scales relevant to ecology. This allows us to consider all3

ecological phenomena as occurring in space and time, whether these dimensions are considered jointly4

or separately in their description, analysis and modeling.5

In practice, the measurements or observations made, whether on abiotic or biotic variables, concern6

a given spatial domain (which we denote D) and which take place over a given period (which we denote7

T ). Even if D and T are not large, it is generally impossible to make measurements or observations8

at every point in D or every time in T . Thus, a fundamental sampling problem immediately arises.9

In the following, we assume that D is a two-dimensional spatial domain lying in Euclidean space.10

Although not mandatory, D is often partitioned into a finite population of areal units (see, e.g., Aubry11

and Francesiaz, 2022, Fig. 1). The same is true for the time domain, which can be discretized into a12

finite population of time units (e.g., potential daily counting sessions for bird counting).13

Regardless of whether the population of spatiotemporal units is finite or considered as infinite, data14

collection is performed in two steps: (i) by selecting a subset of units from D × T to form a sample s15

and (ii) by making measurements or observations on the units of s.16

In the technical mathematical sense, an error is the deviation between a state (or a summary17

of a state) defined on D × T and its estimate or prediction computed from the sample s at hand.18

The first step mentioned above introduces a sampling error because only a portion of the sampled19

spatiotemporal population is considered when collecting the data. The second step generates an error20

that can be treated as a measurement or observation error, for instance, when counting individuals21

(e.g., Aubry et al., 2012) or when assessing the size of vast groups of wild animals (e.g., Vallecillo et al.,22

2021). When individuals are counted, this error can also be treated as a sampling error — where the23

set of individuals counted is a sample of all individuals present — due to imperfect detection (e.g.,24

White, 2005; Kellner and Swihart, 2014; Perret et al., 2023; Johnston et al., 2023, Sec. 4.2). In this25

article, we will focus only on the first source of error, concentrating on the sampling of D. Since we are26

interested only in spatial sampling, we do not discuss methods for counting individuals or problems of27

imperfect detection or of imperfect ability to identify and to count them when they are detected (see,28

e.g., the references cited by Vallecillo et al., 2021 and Aubry et al., 2023).29

In a general sense, we call the sampling process the way by which a sample s is selected from30

a statistical population, regardless of the method used. We reduce the set of sampling processes31

by assuming here that they are without replacement. We assume that the sampling process under32

consideration can be replicated — at least in principle — so that distinct samples (see Hedayat and33

Sinha, 1991, p. 2) can be obtained on the basis of selection probabilities 0 < p(s) < 1. The individuals34

or groups of individuals who perform the sampling may be collectively referred to as the sampler.35

The sampling processes considered in this article are therefore human-based and, as such, are not36

necessarily easy to model in detail (but see ter Steege et al., 2011; Fernández and Nakamura, 2015).37

Statistical inference from a sample can be used to estimate parameters of an actual finite statistical38

population or parameters of a hypothetical superpopulation describing the stochastic process under39

study (see, e.g., Aubry and Francesiaz, 2022, Sec. 2.3). Sampling is said to be preferential when the40

sampling process is related to a superpopulation (e.g., Diggle and Ribeiro, 2007, Sec. 4.4.2; Diggle41

et al., 2010; Watson et al., 2019; Gray and Evangelou, 2023) or to the finite population at hand in such42

a way that units are more likely to be included in the sample if they have the highest values for the43

indicator of interest. For example, in ecology, preferential sampling may refer to preferential inclusion44

in the sample of the most species-rich units, the units with the highest abundances or occupancy45

probabilities. Conversely, we use the expression antipreferential sampling to denote situations where46

units with the lowest values are more likely to be included in the sample. In all the other cases where47

the probability of inclusion in the sample is independent of the characteristics of the unit with respect48

to the variables of interest, sampling is said to be nonpreferential.49

With the previous definition in mind, preferential sampling should be distinguished from (i) conve-50

nience sampling (sometimes called accessibility sampling ; see, e.g., Young and Young, 1998, p. 93 or51

Barnett, 2002, p. 17) and (ii) purposive sampling (also known as judgment sampling). In the first case,52

units are selected for inclusion in the sample for convenience (e.g., ease of access and/or safety for the53

observers). In the second case, units judged to be typical or appropriate for the survey are selected54

from the statistical population under study, for example, when ”ecologists actively seek the event of55

interest, such as an active breeding nest of a bird, or a specific plant species” (Edwards et al., 2006).56

The previous two sampling methods correspond to two forms of nonprobability sampling. Preferential57

sampling can be either a nonprobability sampling method or be based on a random selection mecha-58

nism. We distinguish between the two cases (i.e., nonprobability vs. probability preferential sampling)59

because the statistical implications are quite different. Indeed, in the first case, statistical inference60
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must be based on a model — which can be implicit — and its key assumptions, while in the second61

case, the properties of the estimator used can be based solely on the random selection mechanism (see,62

e.g., Aubry and Francesiaz, 2022).63

As a concrete situation, we assume in this article that sampling is performed in a nonprobability64

setting. We consider two objectives that are central to many ecological studies or monitoring programs:65

assessment of (i) status (i.e., the state observed at a given point in time) or (ii) trend (i.e., a smooth66

pattern of state variation over time) (see, e.g., Gitzen et al., 2012). We do not discuss the scientific67

relevance of either of these depending on the context in which they occur (see, e.g., Vos et al., 2000;68

Yoccoz et al., 2001, 2003; Nichols and Williams, 2006). We merely consider status and trend as69

objects of statistical inference, and our aim is to examine the impact of (nonprobability) preferential70

(spatial) sampling on their assessment, mainly in terms of estimation bias. To this end (i) we formalize71

preferential sampling in the context of finite population sampling; (ii) we briefly consider the one-stage72

probability sampling designs that can be used to model basic without-replacement sampling processes;73

(iii) using appropriate sampling process models, we examine the case of status and trend estimation74

under preferential sampling through Monte Carlo simulation studies; (iv) we introduce to ecology a75

fundamental formula that enables us to understand the very nature of the mean estimation bias that76

can be caused by preferential sampling. Finally, we draw lessons from the results presented, particularly77

with respect to trend assessment. Fig. 1 is intended to provide the reader with an overview of the78

article organization and of the topics covered before the discussion and perspectives sections.79
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Analytical formula of the bias

Example

Monte Carlo study

Status assessment

Sampling process models

Trend assessment

Example

Monte Carlo study

Formalization

Figure 1: Overview of the article organization before the discussion and perspectives sections. We first formalize
preferential sampling in the context of finite population sampling. Next, we consider the probability sampling designs
that can be used to model basic nonpreferential/preferential sampling processes. With these models, we then use Monte
Carlo simulations to study the impact of preferential sampling, first for an example of status assessment, second for an
example of trend assessment. The type of results to be examined is indicated to the right, either in a fixed population
context or in a superpopulation context.
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2. Formalization80

From a population of spatial units (e.g., sites, plots, quadrats) U of size N , spatial sampling consists81

of selecting a subset s ⊆ U of size ns ≤ N , called a sample. The sampled spatial population should82

not be confused with a biological population, i.e., here a set of organisms present in the domain D.83

The size of the spatial population N is not necessarily known to the sampler. In addition, the84

sample size ns may be variable or fixed. It is variable, for example, when the sample is drawn by a85

group of people who do not necessarily consult each other and who each add one or more units to86

the sample. The sample size can be fixed if the sample selection is more centralized, for example, to87

predetermine the sampling effort to be allocated.88

In the following, we consider a univariate situation, i.e., there is only one variable of interest y,89

which takes fixed values for the units i ∈ U . We denote y = (y1, y2, . . . , yN ) as the vector of y-values for90

i ∈ U . By extension, this vector can be called the population (implicitly of y-values) associated with the91

population of spatial sampling units U . The y-vector results from a bioecological stochastic process,92

which may be modeled if appropriate. The observed y-vector is then assumed to be a realization of a93

random vector (i.e., a superpopulation).94

2.1. Inclusion probabilities95

In any sampling process, the probability 0 < πi ≤ 1 that a unit i ∈ U is part of s: (i) is a probability96

of inclusion known to the sampler, as is the case in finite population sampling theory (e.g., Särndal97

et al., 1992; Tillé, 2020); or (ii) expresses the greater or lesser propensity of a unit to be part of the98

sample, which is unknown to the sampler. In the latter case, the probabilities πi (i ∈ U) are propensity99

scores, here simply called propensities. We denote π = (π1, π2, . . . , πN ) as the vector of probabilities100

for i ∈ U . Let us note that the case πi = 0 corresponds to the exclusion of unit i from the sampled101

population, a trivial case not of interest here.102

Whether we are dealing with inclusion probabilities in the strict sense or with propensities, the π-103

vector results from the sampler’s view of the variation of the variable of interest across geographic space,104

without actually knowing it precisely. In particular, the probabilities considered in this article are not105

modified when y-values are observed; therefore, the sampling process can be considered nonadaptive.106

Thus, in this article, we assume that the samples are generated by a sampling process governed by107

probabilities that are fixed in advance, whether consciously or not.108

Where appropriate, the probabilities πi can be defined as being proportional to a variable z (zi > 0109

for all i ∈ U), which assigns more or less importance to the units — this type of variable is known as110

a size variable — and is assumed to be correlated to some level with the variable of interest y.111

2.2. Preferential sampling112

The sampling process is said to be preferential when there is a monotonically increasing relation113

between the y-values and the inclusion probabilities, whether the latter are known or unknown. If the114

relation decreases, we have antipreferential sampling.115

We do not assume that the relation is linear, as this assumption is too restrictive to be realistic.116

Indeed, a linear relation assumes that the propensity increases at a constant rate as a function of the117

y-variable, whereas in reality, it may increase faster at higher y-values, for example. Moreover, the118

relation in question is not necessarily analytical; it can be only statistical — corresponding to the119

conditional expectation — if the propensity varies for each y-value.120

A necessary condition for sampling to be preferential (or antipreferential) is that the probabilities121

πi (i ∈ U) differ significantly between units or at least between groups of units. Sampling is inherently122

nonpreferential if all units have, at least approximately, the same probability of being included in the123

sample.124

2.3. Notation125

In any sampling problem, we can distinguish at least two sources of stochasticity (see, e.g., Aubry126

and Francesiaz, 2022): (i) one that relates only to the sampling process p(s) of the finite population127

of units, resulting in the π-vector and (ii) the other related to the stochastic process ξ at the origin128

of the y-vector (superpopulation). To avoid any ambiguity, operators (expectation, variance, etc.) are129

denoted by using p as a subscript for the first source and ξ for the second. For a parameter ω, the130

sampling distribution of an estimator ω̂, i.e., the distribution of all the values that ω̂ can take for131

all the samples that can be generated, is called the p-distribution. The mean of the p-distribution is132

called the p-expectation of ω̂, its variance is the p-variance (i.e., the sampling variance), and so on.133

We define the p-bias as Bp (ω̂) = Ep (ω̂) − ω and the relative p-bias as Bp (ω̂) /ω. For the stochastic134

process ξ, we similarly denote the ξ-expectation, ξ-variance, and so on. When we consider both135
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sources of stochasticity at the same time, we associate the two subscripts, and we write, for example,136

ξp-expectation. Let us recall that in this article, in the context of double stochasticity, π is fixed, while137

y is random. Other notations used in this article are detailed in Appendix A.138

2.4. Parameters and estimators139

Regardless of whether the spatial population size N is known to the sampler, for a variable of140

interest y (discrete, including binary, or continuous), we assume that the parameter to be estimated141

is the population mean yU .142

In the following, we consider a concrete situation in which (a) the size of the spatial population143

is unknown to the sampler (there is no sampling frame) and (b) the inclusion probabilities are also144

unknown to the sampler (the sample is not the result of applying a probability sampling design). In145

the absence of auxiliary variables that would be (strongly) correlated with y and exhaustively known146

on D, the only data available are the yi values for i ∈ s and the sample size ns. Thus, by default, the147

population mean can be estimated by the sample mean ys, and the p-variance of ys can be estimated148

using:149

V̂p (ys) =
s2y
ns

(1)

3. Sampling process models150

The fact that only a part (i.e., the sample) of the population of spatial sampling units is considered151

for data collection represents a source of uncertainty that may be modeled. This can be referred to as152

a sampling model (Hobbs and Hooten, 2015, Sec. 1.1.3) or an inclusion model (Gelman et al., 2014,153

Sec. 8.2), although both terms are polysemous which can lead to confusion.154

As noted by Hájek (1964, p. 1492), any probability distribution p(s) can be used as a mathematical155

model for any sampling procedure, experiment, or method. Thus, in this article, we model a sampling156

process using an appropriate probability sampling design (Aubry, 2023, Sec. 1.2.4). Basic sampling157

processes (without replacement) can be modeled by one of four one-stage sampling designs, described158

below, depending on whether the propensities are equal or unequal and on whether the sample size is159

fixed or variable (Fig. 2).160

Figure 2: The four one-stage probability sampling designs used as without-replacement sampling process models. POISS-
WOR: Poisson sampling. BERNWOR: Bernoulli sampling. CPS: Conditional Poisson sampling. SRSWOR: Simple
random sampling. The sampling designs are derived from each other by asymmetric relations of equalization of inclusion
probabilities πi (i ∈ U) or conditioning on a fixed sample size n.

3.1. Preferential sampling — variable size (POISSWOR)161

When the sample size is variable and the propensities vary across sampling units, the sampling162

process can be modeled by Poisson sampling, which we denote as POISSWOR.163

In Poisson sampling, (i) the inclusion of a unit i ∈ U in sample s is governed by a Bernoulli trial164

with probability πi and (ii) the resulting random sample size ns follows a Poisson binomial distribution165

(ns ∼ PoiBin(N,π)) (Hájek, 1981, Ch. 6; Särndal et al., 1992, Sec. 3.5; Tillé, 2006, Sec. 5.5; Tillé,166

2020, Sec. 5.8). Let us note that the Poisson binomial distribution is here the generalization of the167

binomial distribution for Bernoulli trials with unequal probabilities (see, e.g., Wang, 1993) and should168

not be confused with the compound distribution described by Johnson et al. (2005, Sec. 9.5).169
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A necessary condition for using POISSWOR as a model for variable-size sampling processes with-170

out replacement is that unit inclusions must be assumed to result from independent events. This171

assumption is broadly consistent with the situation in which the sample results from the actions of172

many people who do not coordinate with each other.173

3.2. Nonpreferential sampling — variable size (BERNWOR)174

When the sample size is variable and the propensities are sufficiently similar to each other such175

that they can be considered equal to a constant probability π, the sampling process can be modeled176

by Bernoulli sampling (also known as binomial sampling), which we denote as BERNWOR.177

In Bernoulli sampling, (i) the inclusion of any unit in the sample is governed by a Bernoulli178

trial with probability π and (ii) the resulting variable sample size ns follows a binomial distribution179

(ns ∼ Bin(N, π)) (Särndal et al., 1992, Sec. 3.2; Tillé, 2006, Sec. 4.3; Tillé, 2020, Sec. 3.2).180

BERNWOR is a special case of POISSWOR when the probabilities πi (i ∈ U) are equal (Fig. 2).181

When modeling a sampling process, BERNWOR has the same independence condition as POISSWOR.182

3.3. Preferential sampling — fixed size (CPS)183

Conditional on a fixed sample size (ns = n for all s), POISSWOR becomes conditional Poisson184

sampling, abbreviated as CPS (Hájek, 1981, Ch. 14; Tillé, 2006, Sec. 5.6; Tillé, 2020, Sec. 5.9) (Fig.185

2). This is a general model suitable for a fixed-size preferential sampling process.186

3.4. Nonpreferential sampling — fixed size (SRSWOR)187

Conditional on a fixed sample size (ns = n for all s), BERNWOR becomes simple random sampling188

without replacement, abbreviated as SRSWOR, for which π = n/N (Särndal et al., 1992, Sec. 3.3.1;189

Tillé, 2006, Sec. 4.4; Tillé, 2020, Sec. 3.3) (Fig. 2). SRSWOR is also a special case of CPS when the190

probabilities πi (i ∈ U) are equal (Fig. 2).191

Let us recall that in this article, we assume that N is unknown to the sampler, so the propensity π is192

also unknown. SRSWOR is an appropriate model for a fixed-size sampling process with approximately193

constant propensities.194

3.5. Estimators195

Unlike the concrete situation we considered in Section 2.4, in Monte Carlo simulations, the π-vector196

is known, as is the population size N . In this case, the population mean can be estimated without197

p-bias using the expansion estimator for the population total (Horvitz-Thompson estimator; see, e.g.,198

Hedayat and Sinha, 1991, Ch. 3) to form the following weighted estimator:199

yπ =
1

N

∑
i∈s

yi
πi

(2)

For BERNWOR and SRSWOR, the estimator (2) simplifies to:200

yπ =
1

N

1

π

∑
i∈s

yi (3)

which for SRSWOR gives the identity yπ = ys since, in this case, we have π = n/N .201

For sampling processes modeled by BERNWOR or POISSWOR (variable sample sizes), the units are202

included in the sample independently. This gives a fairly simple expression for the p-unbiased estimator203

of the sampling variance (p-variance) of the weighted estimator (2) (see Särndal et al., 1992, p. 289).204

The expression for POISSWOR is written as:205

V̂p (yπ) =
1

N2

[∑
i∈s

1− πi

π2
i

y2i

]
(4)

which simplifies for BERNWOR to:206

V̂p (yπ) =
1

N2

[
1− π

π2

∑
i∈s

y2i

]
(5)

In the case of fixed-size designs, in general, to estimate without bias the p-variance, it is necessary to207

know the joint probabilities πij > 0 that two units i ̸= j ∈ U are simultaneously included in the sample.208

The general expression for the p-unbiased estimator of the p-variance of the weighted estimator (2)209
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for an unequal-probability, fixed-size, without-replacement sampling design such as the CPS is (see210

Sen-Yates-Grundy estimator, Hedayat and Sinha, 1991, p. 52, Eq. 3.16):211

V̂p (yπ) =
1

N2

∑∑
(i<j)∈s

πiπj − πij

πij

(
yi
πi
− yj

πj

)2
 (6)

which simplifies for SRSWOR since then we have πi = n/N for all i ∈ U and πij = n(n−1)/[N(N−1)]212

for all i ̸= j ∈ U . After simplification, we obtain (e.g., Tillé, 2020, p. 29, Result 3.1):213

V̂p (yπ) = (1− π)
s2y
n

(7)

In the class of fixed-size without-replacement sampling designs with inclusion probabilities π, the CPS214

is the sampling design of maximum entropy (Hájek, 1981; Tillé, 2006; Tillé, 2020, Sec. 5.9). It follows215

that an approximation to the p-variance estimator (6) may be obtained without involving the joint216

inclusion probabilities πij (i ̸= j ∈ U). We refer the reader to Tillé (2020, Sec. 5.14) and to the217

references cited by Aubry (2023, Sec. 1.3.2).218

4. Status assessment219

From an operational perspective, for a given spatial domain D, status at a given point in time220

corresponds to either (i) the state of a variable of interest or (ii) the value of an indicator summarizing221

the state of the variable of interest. In practice, the point in time is actually a time interval — ideally,222

the shortest possible — which we have denoted T . In the case of abundance, for example, at a certain223

infra-annual time interval T over which a biological population may be assumed to be (approximately)224

closed both geographically and demographically, status in sense (i) may correspond to the spatial225

distribution of abundance, while in sense (ii), it may refer to average abundance. In the following, we226

refer to status in sense (ii) (indicator of interest).227

4.1. Status example228

As an example of a status to be estimated over a D × T spatiotemporal domain, we consider here229

the average species richness for a group of L species and a finite statistical population U of N equal-size230

spatial sampling units, discretizing all or a part of the spatial domain D. The variable of interest y is231

therefore species richness, and the indicator is the finite population mean yU (the time interval T is232

implicit and omitted from the notation).233

In this example, spatial units are considered habitat patches that are disjunct within the spatial234

domain of interest (Wiens, 1976; Hall et al., 1997; Girvetz and Greco, 2007). A habitat patch may235

be included in the sample from a previously established list of all patches (sampling frame) that has236

been established by habitat mapping, in which case N is known. In the absence of a sampling frame,237

habitat patches are included in the sample based on the sampler’s prior knowledge or on what the238

sampler encounters in the field, in which case N is generally unknown. This second case corresponds239

to the concrete situation of preferential sampling considered in this article (Section 2.4).240

In the case of (inherently) nonpreferential sampling, units are selected with the same propensity241

π. With preferential sampling, units are selected based on a subjective assessment of their expected242

species richness, with propensities more or less positively correlated with y-values.243

4.2. Population model example244

As an illustrative example of a variable of interest y, we consider species richness with values245

ranging from 1 to L = 25, distributed according to a zero-truncated beta-binomial distribution246

BetaBinZT(L,α, β) with shape parameters α = 1 and β = 5. These values are realistic since they247

are of the same order of magnitude as those obtained for the species richness of a set of 25 waterbird248

species (ducks, geese, swans, coots, waders and grebes) breeding in European France (see the LIMAT249

scheme described in Aubry et al., 2023, Fig. 1). According to the typology proposed by Aubry and250

Francesiaz (2022, Section 2.4, Table 1), this statistical distribution is a type IV superpopulation model;251

that is, it does not include information on spatial structure or covariates (auxiliary variables). This252

model specifies an infinite set of values, but we are interested here in sampling a finite population253

containing N = 5000 spatial sampling units.254

Among the infinite set of populations containing N = 5000 y-values following a BetaBinZT(25, 1, 5)255

distribution, we choose one such that |α̂− α| < 10−3 and |β̂ − β| < 10−3. The estimator used for the256

shape parameters α and β of the zero-truncated beta-binomial distribution is the second estimator257
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proposed by Tripathi et al. (1994, Sec. 3.1). We can visually check that the histogram of the variable258

y associated with the finite population U we used is very close to that of the superpopulation model259

(Fig. 3). Thus, we have yU = 5.0062 for comparison with its expected value in the model Eξ (yU ) = 5.260
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Figure 3: Distribution of the superpopulation model (in dark green) and histogram of the simulated population for
N = 5000 (in light green).

4.3. Monte Carlo study261

In this section, we examine the estimation of yU by ys in four situations, combining the preferential262

vs. nonpreferential nature of the sampling process and a variable vs. fixed sample size.263

In the case of preferential sampling, the propensities are defined as being proportional to a size264

variable z (zi > 0 for all i ∈ U):265

πi = P
zi
Z

with P =
∑
i∈U

πi and Z =
∑
i∈U

zi (8)

In the case of POISSWOR or BERNWOR, we have P = Ep (ns) (variable sample size); in the case of266

CPS or SRSWOR, we have P = n (fixed sample size).267

Since we must respect the constraint πi ≤ 1, it follows that if we have zi > Z/P for at least one268

unit, we must perform the preprocessing described, for example, by Aubry (2023, Sec. 3.1) (see also269

Tillé, 2020, Sec. 5.2). From the above, we deduce that Rπy = Rzy if and only if zi ≤ Z/P for all i ∈ U .270

In the following, we consider cases where this condition holds (for a counterexample, see Aubry et al.,271

2020, Sec. 4.4).272

We define a model for the size variable z in which the correlation with y is ρzy. We vary ρzy273

between 0 and 1 by attenuating perfect positive correlation — for correlation attenuation; see, e.g.,274

Charles (2005) — by adding a Gaussian error term ϵ ∼ N(0, σ2
ϵ ) to y. Thus, for each i ∈ U :275

zi = ϵi with σ2
ϵ > 0 for ρzy = 0

zi = yi + ϵi with σ2
ϵ = S2

y(1− ρ2zy)/ρ
2
zy for 0 < ρzy < 1

zi = yi with σ2
ϵ = 0 for ρzy = 1

(9)

Ultimately, to guarantee zi > 0 (and hence, πi > 0) for all i ∈ U , we apply the linear transformation276

zi −min(z) + 0.1.277

In the same spirit as obtaining y, we want the value of the finite population correlation Rzy278

to approximately match the superpopulation correlation ρzy. To achieve this, we generate random279

outcomes of the z-vector until we obtain |Rzy − ρzy| < 10−6. Having obtained the z-vector, we then280

set a value for P and compute the π-vector according to expression (8).281

In the following, we replicate a given sampling process model with P = 500, i.e., with 10% as the282

sampling fraction (fixed sample size) or expectation of the sampling fraction (variable sample size).283

For each replication, we compute ys and V̂p (ys). We use 106 replications to accurately approximate284

the p-distributions of these two estimators. Therefore, we can assess the possible estimation bias of285
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the population mean yU by the sample mean ys and also that of the p-variance Vp (ys) by the default286

estimator V̂p (ys) (Eq. 1).287

To evaluate the estimation bias of a parameter ω by using an estimator ω̂, we define a bias index288

BI = E(ω̂)/ω. The bias E(ω̂)− ω is positive if BI > 1, zero for BI = 1, and negative if BI < 1. Here,289

to assess the estimation bias for the p-variance of the sample mean, we form:290

BI =
EMC

(
V̂p (ys)

)
VMC (ys)

(10)

where EMC (·) and VMC (·) are the mean and variance calculated over the 106 replications of the Monte291

Carlo study.292

4.3.1. Nonpreferential sampling — variable size (BERNWOR)293

The sampling process model corresponding to (inherently) nonpreferential sampling of variable size294

is BERNWOR. The p-distribution of ys for π = 0.1 (Ep (ns) = 500) is shown in Fig. 4.a.295

In the BERNWOR case, the p-unbiased estimator of the population mean is the weighted esti-296

mator yπ, which differs from the sample mean ys. This difference implies that the estimation of the297

population mean using the sample mean is p-biased. However, the bias is generally negligible and of no298

consequence, as shown in our example (Fig. 4.a). Here, although mathematically biased, the sample299

mean is actually a preferable estimator to the weighted estimator (see Särndal et al., 1992, p. 64, Eq.300

3.2.6 and Tillé, 2020, p. 35).301

The default estimator for the p-variance of ys (Eq. 1) is slightly positively biased since we obtain302

BI ≈ 1.1136. The p-variance of ys under the BERNWOR model is approximately the same as that303

under the SRSWOR model (Särndal et al., 1992, p. 65) (see Section 4.3.2 and Fig. 4).304

4.3.2. Nonpreferential sampling — fixed size (SRSWOR)305

The sampling process model corresponding to the (inherently) nonpreferential fixed-size sampling306

is SRSWOR. The p-distribution of ys for π = 0.1 (n = 500) is shown in Fig. 4.b.307

As recalled in Section 3, in the SRSWOR case, we have the identity yπ = ys. This identity implies308

that the estimation of the population mean using the sample mean is p-unbiased (Fig. 4.b).309

Conversely, the default estimator of the p-variance (Eq. 1) is positively biased since we obtain310

BI ≈ 1.1111. This is because the unbiased estimator in the SRSWOR model (Eq. 7) introduces a311

finite population correction (see Cochran, 1977, Sec. 2. 6) fpc = 1− π, which is closer to 0 the closer312

π is to 1. At the extreme, the p-variance becomes zero when n = N (finite population consistency ;313

see Cochran, 1977, Sec. 2.4, p. 21 or Hankin et al., 2019, p. 325). The magnitude of the p-variance314

overestimation depends on the value of the sampling fraction π = n/N , which remains unknown when315

N is not known. Let us note that the value obtained by Monte Carlo simulation for BI agrees with316

the theoretical value (1− π)−1 for π = 0.1.317
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Figure 4: Approximate sampling distributions using 106 replications of each nonpreferential sampling model for π = 0.1.
(a) BERNWOR. (b) SRSWOR. The population mean is shown by the red dashed line. The average of the values taken
by ys is shown by the blue line.

4.3.3. Preferential sampling — variable size (POISSWOR)318

The sampling process model corresponding to variable-size preferential sampling is POISSWOR.319

The vector of probabilities π is computed as explained in Section 4.3 for Ep (ns) = 500 (variable sample320

size). The p-distributions of ys for Rπy = 0.5 and Rπy = 0.9 are shown in Fig. 5.321
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Figure 5: Approximate sampling distributions using 106 replications of the POISSWOR model with P = 500. (a)
Rπy = 0.5. (b) Rπy = 0.9. The population mean is shown by the red dashed line. The average of the values taken by
ys is shown by the blue line.

In the case of POISSWOR, the p-unbiased estimator of the population mean is the weighted322

estimator yπ, which is different from the sample mean ys. Therefore, like with BERNWOR, the323

estimation of the population mean using the sample mean is p-biased. However, unlike the BERNWOR324

case, this should not be neglected since the relative p-bias is approximately 10.2% for Rπy = 0.5 and325

27.6% for Rπy = 0.9 (Fig. 5). The default estimator for the p-variance of ys (Eq. 1) is positively326

biased since we obtain BI ≈ 1.1411 for Rπy = 0.5 and BI ≈ 1.1788 for Rπy = 0.9.327

4.3.4. Preferential sampling — fixed size (CPS)328

The sampling process model corresponding to fixed-size preferential sampling is CPS. The π-vector329

is the same as that for POISSWOR. The p-distributions of ys for Rπy = 0.5 and Rπy = 0.9 are shown330

in Fig. 6.331
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Figure 6: Approximate sampling distributions using 106 replications of the CPS model for P = 500. (a) Rπy = 0.5. (b)
Rπy = 0.9. The population mean is shown by the red dashed line. The average of the values taken by ys is shown by
the blue line.

In our example, the case of CPS is very similar to that of POISSWOR since the relative p-bias of332

the sample mean is approximately 10.2% for Rπy = 0.5 and 27.6% for Rπy = 0.9 (Fig. 6). The default333

estimator for the p-variance of ys (Eq. 1) is also positively biased since we obtain BI ≈ 1.1387 for334

Rπy = 0.5 and BI ≈ 1.1793 for Rπy = 0.9, values that are close to those obtained in the POISSWOR335

case.336

4.3.5. Zero-correlation between the propensity and the variable of interest337

Thus far, we have simulated preferential sampling for Rπy = 0.5 and Rπy = 0.9. In this section,338

we examine the degenerate situation where Rπy = 0.339

When the correlation between the propensities and y-values is zero, the relative p-bias of the340

sample mean is essentially zero for both POISSWOR and CPS (Fig. 7). The default estimator for the341

p-variance of ys (Eq. 1) is positively biased, with BI ≈ 1.1223 for the POISSWOR and BI ≈ 1.1201 for342
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the CPS. Although the propensities are variable, sampling is nonpreferential (Fig. 7). The situation343

is broadly equivalent to that encountered with the BERNWOR and SRSWOR models (Fig. 4).344
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Figure 7: Approximate sampling distributions using 106 replications of each unequal propensity sampling model for
P = 500 and Rπy = 0. (a) POISWOR. (b) CPS. The population mean is shown by the red dashed line. The average of
the values taken by ys is shown by the blue line.

4.4. An analytical formula for the bias of the sample mean345

In this section, we focus on the formal expression of the p-bias of the sample mean ys for estimating346

the population mean yU . For algebraic details, the reader is referred to Appendix B.347

For a sampling design of variable size, the p-bias of the sample mean can be written as (Ap-348

pendix B.1):349

Bp (ys) = Ep (ys)− yU ≈
Rπy SπSy

πU
(11)

where RπySπSy = Sπy is the (adjusted) covariance between π and y (see Appendix A).350

In our example, we have yU ≈ 5, Sy ≈ 3.7787, N = 5000 and πU = 0.1. For Rπy = 0.5, we have351

Sπ ≈ 0.0272, from which we obtain Bp (ys) ≈ 0.51 and a relative p-bias of approximately 10.2%, in352

agreement with what we obtained via Monte Carlo simulation in the POISSWOR case (Section 4.3.3).353

For Rπy = 0.9, we have Sπ ≈ 0.0407, from which we obtain Bp (ys) ≈ 1.38 and a relative p-bias of354

approximately 27.6%, which again matches the value found earlier by Monte Carlo simulation.355

In the case of a fixed-size sampling design, the p-bias of the sample mean admits an exact expression356

(Eq. B.11, Appendix B.2), but we can also use expression (11) as a close approximation when N is357

not too small. Consequently, we obtain the same results for CPS as for POISSWOR.358

As expected, the observations in the cases studied by Monte Carlo simulation match the results359

computed by using formula (11). In the context of Monte Carlo simulation, when we are interested in360

the p-bias of the sample mean, this formula allows us to avoid replicating a sampling process model.361

We use this computational shortcut when appropriate throughout the remainder of this article.362

Examination of formula (11) shows that the sample mean is a p-unbiased estimator of the population363

mean in the following two situations: (i) when the propensities are variable (Sπ > 0), if there is no364

correlation between the propensities and the y-values (Rπy = 0) or (ii) when propensities do not vary365

(Sπ = 0), since then the covariance and correlation are zero (Sπ = 0 ⇒ Sπy = 0 ⇒ Rπy = 0). If the366

covariance between the propensities and the y-values remains unchanged (fixed Sπy), the lower the367

sampling fraction (fixed sample size) or its expectation (variable sample size) πU is, the greater the368

bias. As expected, the p-bias is zero in the case of a census since the propensities do not vary (and are369

all equal to 1), which is the same as in case (ii) above.370
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5. Trend assessment371

For operational purposes, a trend can be defined as a pattern of change in the indicator of interest372

over time. In the following, we consider a monitoring program designed to study the trend of a373

population parameter over a period ∆. The monitoring program starts at time t0 and ends at time374

t0 +∆.375

5.1. Trend example376

As an example of a trend to be estimated, we consider here the trend in the abundance of a species377

over a bounded domain D of the Euclidean plane, partitioned by a population U of subdomains di378

(i = 1, 2, . . . , N), formally:379

D =
⋃
i∈U

di with di ∩ dj = ∅ for i ̸= j ∈ U and |D| =
∑
i∈U
|di| (12)

In a general sense, subdomains can have different shapes and sizes. To simplify the presentation, in380

what follows, we consider the case where D is an iso-oriented rectangular domain (i.e., its sides are381

parallel to the abscissa and ordinate axes), lying between xmin and xmax on the abscissa and between382

ymin and ymax on the ordinate. With such a domain, subdomains can simply be square cells of equal383

size. Thus, D is discretized into a spatial population of NX× NY = N grid cells of equal size, where384

NX and NY are the numbers of columns and rows in the grid, respectively.385

For the species of interest, at time t (omitted from the notation for simplicity), an individual has386

a certain probability density f(u) > 0 of being present at a point u ∈ D with Cartesian coordinates387

(xu, yu). The value of the variable of interest yi is the number of individuals present in grid cell di388

(i ∈ U), i.e., the number of points u where the species is present such that u ∈ di (here, a point389

represents only one individual).390

When the size N of the sampled spatial population U is known, it is the same, to within a factor391

— i.e., N for the point estimator and N2 for its p-variance — to estimate the mean or the total392

abundance. For the concrete situation of preferential sampling that we address in this article (Section393

2.4), we consider that N is unknown to the sampler. Thus, in what follows, the parameter of interest394

is the population mean yU , estimated by the sample mean ys, as in Section 4. We assume that the395

spatial variability of the variable of interest is greater on the abscissa than on the ordinate and that396

at time t0, there is a spatial gradient in abundance from xmin to xmax.397

5.2. Population model example398

5.2.1. Simulating an inhomogeneous binomial point process399

The spatial distribution of a fixed number of individuals M over D can be modeled by an inhomo-400

geneous binomial point process (abbreviated as IBPP) with a spatial intensity function λ(u). Since401

a binomial point process is a Poisson point process conditional on M , simulation of an IBPP can be402

performed as for an inhomogeneous Poisson point process using the Lewis-Shedler method (see, e.g.,403

Illian et al., 2008, p. 119; Baddeley et al., 2016, Sec. 5.4.2). An IBPP is simulated as follows:404

1. Generate a point u ∈ D following a Bernoulli point process.405

2. The probability of keeping this point is computed as p(u) = λ(u)/λ∗, where λ∗ is the maximum
value of the intensity on D:

λ∗ = max
u∈D

λ(u)

3. A Bernoulli trial is performed with probability p(u). If the trial is successful, then the point u is406

kept.407

4. Steps 1 to 3 are repeated until M points are drawn.408

From a realization of the IBPP, the y-vector is obtained by counting the number of points within409

each grid cell di (i ∈ U). Simulating the realizations of the variable of interest directly by allocating410

the M individuals among the N grid cells is equivalent to doing so. First, for i = 1, 2, . . . , N , the411

probability pi of drawing grid cell di is computed as follows (we recall that the grid cells form a412

partition of D):413

pi =

∫
di

λ(u)du∑
i∈U

∫
di

λ(u)du

=

∫
di

λ(u)du∫
D
λ(u)du

(13)

13



In our case, for all i ∈ U , we have an area |di| (i) that is very small compared to area |D| and (ii)414

that is a constant (the square grid cells have the same area). Therefore, in two steps, we obtain the415

following approximation:416

pi ≈
λ(ui) |di|∑

i∈U
λ(ui) |di|

=
λ(ui)∑

i∈U
λ(ui)

(14)

where ui is the barycenter of grid cell di.417

The M individuals are allocated as follows:418

1. Initialize yi ← 0 for i = 1, 2, . . . , N .419

2. Select a grid cell of index j by unequal probability sampling with replacement (also known as420

multinomial sampling) (e.g., Johnson et al., 1997, Sec. 8; Aubry, 2023, Remark 6) with drawing421

probabilities pi (i = 1, 2, . . . , N).422

3. Increment yj ← yj + 1.423

4. Steps 2 and 3 are repeated until M grid cells are drawn.424

5.2.2. Spatial intensity function425

As mentioned above, we assume that the spatial distribution of individuals over D is governed by426

a spatial intensity function λ(x) describing a one-dimensional gradient along the x-axis (we now use x427

instead of xu to simplify the notation). The shape of this spatial gradient is determined by the shape428

parameter η (Fig. 8) according to the expression:429

λ(x) =
λ∗ exp(η x′)

δ
with x ∈ [xmin, xmax] (15)

where x′ ∈ [0, 1] is defined as follows:430

x′ =
x− xmin

xmax − xmin
(16)

and431

δ =

{
1 if η < 0
exp(η) otherwise

(17)

The degenerate case λ(x) = λ∗ is obtained for η = 0 (Fig. 8) and corresponds to a homogeneous432

binomial point process and equiprobable allocation.433
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Figure 8: Plot of the intensity function λ(x) on the interval x ∈ [0, 1] with λ∗ = 10, for η = 0, 1, 2, 3, 4.

14



We assume that the shape of the spatial gradient changes over time in such a way that its direction434

is completely reversed at time t0+∆, i.e., it is ultimately from xmax to xmin. This can be achieved with435

the shape parameter η (Eq. 15) by gradually decreasing its initial value η0 at time t0 until η∆ = −η0436

at time t0 +∆ (example in Fig. 9).437
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Figure 9: Plot of the intensity function λ(x) on the interval x ∈ [0, 1] with λ∗ = 10, at time t0 (η0 = 4, solid line) and
at time t0 +∆ (η∆ = −4, dashed line).

5.3. Monte Carlo study438

We assume that the number of individuals M in D remains constant over the monitoring period439

(no demographic change).440

Preferential sampling of fixed size n is performed according to the sampler’s view of the variation441

in abundance over D at time t0, favoring the sampling units expected to be the richest in individuals,442

i.e., those with the highest y-values. As mentioned in Section 3, this type of preferential sampling443

process can be modeled by conditional Poisson sampling (CPS). Under preferential sampling, we have444

shown that using the sample mean biases the mean abundance estimation over D (Section 4). This is445

not a problem for assessing trends or changes between two points in time, as long as the bias remains446

(approximately) constant over the monitoring period, which here implies that the units that were447

expected to be the richest in individuals at time t0 remain so between t0 and t0 + ∆. Conversely,448

let us consider a directional change in the spatial distribution of individuals in D over the monitoring449

period. In this situation, using the sample mean to estimate the population mean results in estimating450

a spurious trend.451

In our example, at the start of the monitoring program, the sampler knows that there is a spatial452

gradient in abundance from xmin to xmax but does not know its exact shape. By default, we simulate453

this situation by using a size variable expressed as zi = a × xi + b with (a, b) such that zi > 0 for all454

i ∈ U to guarantee a probability πi > 0 of being part of the sample.455

We thus have (i) a fixed vector of propensities (π) computed from the size variable (z) (Eq. 8, Fig.456

10, top panel) and (ii) a random vector of abundances (y) obtained according to the intensity function457

λ(x) (Eq. 15, Fig. 10, bottom panel). For a given realization of the spatial variation model defined by458

λ(x), the correlation between the propensities and the abundances takes a certain fixed value Rπy. The459

model can generate an infinite number of y-vectors, hence an infinite number of Rπy-values (within the460

range of variation of Rπy for this model). If the population size is sufficiently large, for convenience,461

the correlation between the propensities and the abundances in the model (ρπy) can be assimilated to462

the ξ-expectation of the population correlation Rπy (Appendix A, Fig. 10):463
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Figure 10: Schematic representation of the relationships between the simulation components. Top panel: The size variable
(z) determines the propensities (π), which remain fixed. Bottom panel: The intensity function of the inhomogeneous
binomial point process (λ(x)) determines the vector of abundances (y), which is random. If the population size is
sufficiently large, for convenience, the correlation in the model (ρπy) can be assimilated to the ξ-expectation of the finite
population correlation Rπy .

In the following, we first consider the case of a fixed population (i.e., a given realization y) and then the464

case of the superpopulation model itself. We decrease the shape parameter η to simulate the reversal465

of the spatial gradient in abundance over D between t0 and t0 +∆, where we assume that η decreases466

linearly with time. For simplicity, we decrease η by one unit per time unit (e.g., per year or decade).467

By varying the shape parameter from η0 = 4 at time t0 to η∆ = −4 at time t0+∆ (Fig. 9), we cover a468

monitoring period of ∆ = 8 time units and have a (short) time series of 9 mean abundance estimates469

to fit a (parametric) temporal trend model.470

We simulate a simple situation where an iso-oriented rectangular domain D is discretized by N =471

2 500 square cells organized according to a grid of NX = 100 columns and NY = 25 rows. For472

simplicity, we set xmin = ymin = 0, xmax = 100 and ymax = 25 so that each grid cell has a unit area.473

The maximum intensity is λ∗ = 10 (the number of points per unit area, i.e., also per grid cell).474

Regardless of the value of η, M = 10 000 individuals are randomly allocated among the N = 2500475

grid cells, as explained in Section 5.2. Therefore, we have yU = M/N = 4. To define the size variable476

z, we choose a = b = 0.1, that is, zi = 0.1 × xi + 0.1 (i ∈ U). We again use a sampling fraction of477

10%, i.e., n = 250. The variable propensities that form the π-vector result from the previous choices478

regarding z and n; they remain constant throughout the simulations (Fig. 10, top panel).479

5.3.1. Fixed population480

Like in Section 4, for each value of η, we keep a y-vector of abundances for which the correlation481

Rπy is approximately equal to a value of ρπy compatible with the value of η. For each case, we482

generate realizations of the y-vector until we obtain one for which we have |Rπy − ρπy| < 10−4. We483

take η = 4, 1, 0,−1,−4. Compatible correlation values are ρπy = 0.8, 0.5, 0.0,−0.5,−0.8.484

In the case of fixed populations, we are interested in the p-distribution of the sample mean (ys)485

and in the p-bias in particular. We replicate 106 times the conditional Poisson sampling (CPS) based486

on the π-vector to accurately approximate the p-distribution of ys. Several samples obtained by CPS487

are shown in Fig. 11. As expected for a (putative) linear gradient in abundance from xmin to xmax488

and preferential sampling, we see a greater spatial concentration of selected units toward the higher489

abscissas and a unit deficit toward the lower abscissas, with a continuum of unit densities in between.490
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Figure 11: Several samples selected by CPS with inclusion probabilities proportional to a size variable z that varies
linearly according to the equation zi = 0.1× xi + 0.1 (i ∈ U) and for n = 250. See the text for details.

In agreement with the analytical formula for the bias of the sample mean (Eq. 11), it appears491

that the bias is initially positive for Rπy > 0, vanishes for Rπy = 0 and then becomes negative for492

Rπy < 0 (Fig. 12). Sampling that planned to be preferential at the beginning of the monitoring493

program becomes nonpreferential and eventually antipreferential due to spatial gradient reversal.494
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Figure 12: Results of the Monte Carlo study for the five fixed populations. (1) η = 4, Rπy = 0.8. (2) η = 1, Rπy = 0.5.
(3) η = 0, Rπy = 0. (4) η = −1, Rπy = −0.5. (5) η = −4, Rπy = −0.8. (a) Finite populations simulated on a
100×25 grid as a function of the spatial variation model for the set of η-values. The marginal graph (in gray) represents
the mean abundance in the grid cells along the x-axis. This reflects the realization of the spatial variation model.
(b) Approximations of the p-distributions of the sample mean (ys); 10

6 samples are generated by conditional Poisson
sampling. The finite population mean is represented by the red dashed line. The average of the values taken by ys
is shown by the blue line. The figures are adjusted to maximize visibility, so the scales may differ from one figure to
another. See the text for details.
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In practice, a sample of spatial units s obtained at time t0 may remain unchanged over the mon-495

itoring period (permanent plots, fixed monitoring network). In the following, we assume that this is496

indeed the case. In our example of a reversal spatial gradient, with simulated preferential sampling497

and by using the sample mean ys as an estimator of the population mean yU , there is a serious risk498

of systematically highlighting a downward trend, while in fact, the abundance in D remains constant499

over the monitoring period (no demographic change).500

To investigate this hypothesis, at time t0, we simulate 104 samples using CPS. We compute ys for501

each sample and for each of the abundance vectors at the times corresponding to the different values of502

η. This gives 104 time series of mean abundance estimates. We add four more η values than those used503

above, with η = 3, 2,−2,−3 for which compatible correlation values are ρπy = 0.79, 0.72,−0.72,−0.79.504

With a time series of 9 mean abundance estimates at hand (for η = 4, 3, 2, 1, 0,−1,−2,−3,−4), we fit505

a linear regression model as a function of time. We use weighted least squares regression (see, e.g.,506

Press et al., 1989, Sec. 14.2) to account for the p-variance estimates. For each sample, we thus obtain507

a straight line with slope m, and for all the 104 samples generated by CPS, we obtain an envelope of508

straight lines reflecting the sampling variability of the trend highlighted by the monitoring program.509

As expected, in our example, a downward trend is obtained in all the cases, with an average slope of510

Ep (m) ≈ −0.56 (Fig. 13).511

Figure 13: Weighted least squares adjusted linear trend model as a function of time (gray line) for the 9 estimates of
the population mean by the sample mean (ys) (black dots). The results for 104 samples. See the text for details.

5.3.2. Superpopulation512

In this section, we document the bias of the sample mean ys in the context of both the pref-513

erential sampling process modeled by CPS and the process of spatial variation in abundance. The514

ξp-expectation of ys is written as follows (we recall that the notation indicates the two sources of515

stochasticity involved, with subscript ξ for the superpopulation model and subscript p for the sam-516

pling process):517

Eξp (ys) = Eξ (Ep (ys)) (18)

In our model, the population mean yU is constant because we always allocate a fixed number of M518

individuals among a fixed number of N units (no demographic change). The ξp-bias is therefore:519

Bξp (ys) = Eξp (ys)− yU (19)

and the relative ξp-bias is Bξp (ys) /yU . The p-expectation of ys can be expressed by using the p-bias520

expression, which gives:521

Bξp (ys) = Eξ [Bp (ys) + yU ]− yU (20)
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If we are interested only in the value of the ξp-bias (or the relative ξp-bias), as mentioned in Section522

4.4, we do not need to replicate the sampling process in our simulation since we know how to compute523

the p-bias analytically (Eq. 11 or Eq. B.11). However, it is necessary to simulate y-vector realizations524

to approximate the ξ-expectation that appears in the right term of expression (20).525

In the following, we simulate 104 y-vectors for each η-value varying between η = 4 (spatial gradient526

in abundance from xmin to xmax) and η = −4 (gradient from xmax to xmin) with a step of 0.25. We can527

also compute the correlation in the model — assimilated here for simplicity to the ξ-expectation of the528

population correlation — for each simulated situation. On average, under the model, the population529

correlation varies between approximately 0.8 for η = 4 at time t = 1 and −0.8 for η = −4 at time t = 9,530

with ρπy = 0 for η = 0 at time t = 5 (Fig. 14.a). The relative ξp-bias ranges from approximately531

−52.7% for η = −4 at time t = 9 to 52.7% for η = 4 at time t = 1 (Fig. 14.b). As a result,532

a preferential sample set up at the beginning of the monitoring program — as explained above —533

results in a downward trend (approximately linear) on average under the model, while the number of534

individuals did not actually change over the ∆ period, but the spatial gradient was reversed.535
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Figure 14: Approximation by Monte Carlo simulation (104 realizations of the model) of the relation with time (t) of (a)
the ξ-expectation of the population correlation between the propensity and the variable of interest and (b) the relative
ξp-bias of the sample mean.

6. Discussion536

To date, the issue of nonprobability preferential sampling (as defined in Section 2.2) has not received537

sufficient attention in ecology. This may mean that most ecologists do not have a clear idea of the538

implications of this type of nonprobability sampling for their studies and monitoring programs. This539

observation led us to examine the issue in detail from a methodological perspective, through the540

example of a program aimed at estimating the status or trend of a finite population parameter.541

First, we formalized the basic instances of without-replacement sampling processes by modeling542

them in terms of probability sampling designs. While we have applied this approach to spatial sampling,543

its versatility extends to temporal sampling, where the issue of preferential sampling may also arise544

(for example, migratory bird surveys are typically conducted at specific times of the year when bird545

migration is expected to peak).546

Next, we used Monte Carlo simulations to study the bias of the sample mean as an estimator of547

the population mean, first in the case of status assessment and second in the case of temporal trend548

assessment. In the case of estimating the status of a population parameter (e.g., mean species richness),549

we illustrated the risk of preferential sampling in terms of bias in the estimation of the population550

mean since the relative bias may be unacceptable (e.g., greater than 10%), thereby leading to erroneous551

conclusions. In addition, we showed that the estimation of the sampling variance was also biased when552

simply using the formula for the variance of the mean s2y/n. We also noticed that the fact that the553

sampling process results in fixed or variable sample sizes did not appreciably alter the results obtained554

and is therefore not in itself a cause for concern. Thus, treating the sample size as fixed and estimating555

parameters conditional on its value is a legitimate practice, at least for the question with which we556

are concerned in this article, for a sufficiently large population size and moderate sampling fraction.557

In the case of estimating the temporal trend of a population parameter such as mean abundance, the558

simulated example shows that using preferential sampling at the beginning of the program to establish559

permanent plots or sites can lead to the identification of a downward demographic trend when there560

is a directional change in the spatial distribution of individuals, even though abundance is actually561

constant over the monitoring period.562
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Hence, we clearly demonstrated that, without knowledge of the inclusion probabilities, the sampler563

lacks awareness of the magnitude of the potential biases in either the sample mean or its sampling564

variance. The simulated case for the trend assessment is a clear example of time-varying spatial565

bias (Johnston et al., 2023, Sec. 3.1). The type of erroneous conclusions reached in this case has566

already been clearly stated by Fournier et al. (2019) for abundance and Palmer (1993) for community567

heterogeneity, but these authors referred to the phenomenon of regression to the mean, which differs568

from what we have considered in this article. In a different ecological scenario than the one we569

considered, McClure and Rolek (2023) noted that preferential sampling may delay the detection of570

a downward trend. For biological conservation purposes, the common conclusion is that preferential571

sampling can have a profound impact on trend estimation, either by highlighting a downward trend572

where none exists (Type I statistical error) or by failing to detect (in time) a downward trend that573

actually exists (Type II statistical error, insufficient statistical power). These two possibilities should be574

considered when evaluating the statistical power of a nonprobability preferential sampling monitoring575

program designed to detect downward trends.576

In this article, a new perspective on biased site selection was introduced to quantitative ecology.577

We have modeled preferential sampling processes using probability sampling designs for the purpose578

of Monte Carlo simulation and also analytical formulation of the estimation bias. For status and trend579

assessment, we caution against the use of preferential sampling in a nonprobability framework. We580

showed that the bias in estimating the mean increases with the covariance between the propensity581

and the variable of interest (species richness, abundance, etc.) and decreases with increasing sampling582

effort. This is a simple but fundamental result that deserves greater recognition. In the following583

sections, we take a closer look at the discussion points that emerge from our article.584

6.1. The scope of the simulated examples585

The simulated examples in our article are intended to make our findings as clear as possible.586

Some objections can be raised: (1) real ecological studies and programs are not based on preferential587

sampling, so the problem documented in this article does not occur in practice; (2) the simulated588

situations bear no relation to reality.589

Regarding point (1), it is clear that many programs actually use preferential sampling, at least590

implicitly. Observers have a general tendency to select sites that are species rich (with rare species)591

and/or high in abundance rather than opting for sites that may initially seem less interesting for592

naturalistic observations. This behavior applies to both flora and fauna data collection (see, e.g.,593

Chytrý, 2001; Lepš and Šmilauer, 2007; Diekmann et al., 2007; Conn et al., 2017; Bowler et al., 2022).594

Many examples can be provided from the ornithological world, given birds are among the best studied595

of all animal groups. In the case of Galliforms, for example, a comprehensive review of data sources596

on a global scale shows that, with the exception of atlases, data tend to be collected preferentially597

from sites visited by tourists and bird specialists (biodiversity hotspots), while areas with few rare598

species or protected areas are neglected (Boakes et al., 2010, p. 5). This results in a spatial coverage599

problem typical of preferential sampling but which also involves convenience sampling because of access600

difficulties (for logistical or political reasons). Another example is the Dutch Breeding Bird Monitoring601

Program (BMP), which again relies on both convenience and preferential sampling since the observers602

are free to choose their study areas, and in each habitat, they may prefer the most attractive sites,603

i.e., those that are species-rich and have high bird densities (van Turnhout et al., 2008). An example604

of a program that relies on both purposive and preferential sampling is the International Waterbird605

Count (IWC) — a site-based counting scheme for monitoring waterbird numbers organized at the606

supranational level by Wetlands International — where sites are defined by the judgment of national607

coordinators and local observers and where decisions about which sites to count are based on their608

relative importance (Delany, 2010, Sec. 4). These few examples illustrate that programs based on609

nonprobability sampling of count sites do not fall under a single sampling type but generally involve610

some degree of preferential sampling.611

With respect to point (2), when estimating population trends in the context of global warming,612

range shifts have already occurred in many places for different taxa and can be expressed in terms613

of latitude, longitude, elevation or depth (see, e.g., McCarty, 2001; Parmesan, 2006, 2019; Lenoir614

and Svenning, 2013, 2015; Dahms and Killen, 2023 and references cited therein). While real-world615

situations may not be as extreme as the complete reversal of a spatial gradient in abundance as616

simulated in this paper, the range shift phenomenon is undeniably real; moreover, its frequency is617

likely to increase with global warming, as temperature and drought (for terrestrial ecosystems) are618

the most limiting abiotic factors for many species. For birds, for example, range shifts in wintering619

areas have been well documented (e.g., Maclean et al., 2008, Lehikoinen and Sparks, 2010; Lehikoinen620

et al., 2013). For some species, this phenomenon may also act in synergy with a change in predation621
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pressure (Pokallus and Pauli, 2015). Changes in trophic interactions may contribute to a change in622

the geographic distribution of individuals. For example, this may be the case for the Eider Duck623

(Somateria mollissima), for which there is a possible shift from open islands to forested islands. Since624

the islands monitored are mostly open islands, the result can be the observation of a spurious downward625

trend (Ekroos et al., 2012, Sec. 4.2). Due to the gregarious behavior of migratory birds (for example)626

and communication between individuals, it is also possible that such shifts occur quickly.627

In addition to the examples simulated in this article, as we have previously explained in detail in628

another context (Aubry et al., 2020, Sec. 5.1), the estimation by the sample mean is biased if the629

propensities vary significantly and are correlated with the variable of interest (e.g., species richness,630

abundance). This aligns well with the situation of preferential sampling described in this article. We631

note that a similar result occurs when estimating the variance of the sampled population, which may632

be a goal in itself (see Courbois and Urquhart, 2004), a topic not covered in this article.633

6.2. The bias of the sample mean634

Beyond the results obtained by Monte Carlo simulation, we formally showed that the bias of the635

sample mean as an estimator of the population mean can be written essentially as the population636

covariance between the propensities and y-values divided by the mean propensity, i.e., the sampling637

fraction in the case of a fixed-size sampling process or its expectation in the case of a variable-size638

sampling process (Appendix B). Although Aubry et al. (2020) and Boyd et al. (2023) have recently639

mentioned the key role played by the correlation between sample membership and the variable of640

interest, to our knowledge, the analytical expression for the bias of the sample mean has so far remained641

unknown to the ecological audience. In this respect, our paper fills a statistical gap in the field of642

quantitative ecology.643

The analytical expression for the bias (or similarly, the relative bias) of the sample mean can also644

be found in the statistical literature specializing in the treatment of nonresponse (see Kalton and645

Maligalig, 1991, Eq. 1.3; Särndal et al., 1992, p. 577, Eq. 15.6.3, 15.6. 4; Bethlehem, 1988, Eq.646

3.5; Bethlehem, 1999, p. 129; Bethlehem, 2002, p. 276; Särndal and Lundström, 2005, p. 92; Brick647

and Montaquila, 2009, Eq. 4; Bethlehem, 2009, p. 222; Bethlehem et al., 2011, p. 44; Haziza and648

Beaumont, 2017, Eq. 3.4). An algebraically equivalent formula, but of less pedagogical interest, is649

given by Groves et al. (2004b, Appendix) (see also Groves et al., 2004a, p. 182). We would like to650

draw the reader’s attention to the fact that this specialized literature is a methodological resource of651

utmost interest that should be taken into account in quantitative ecology, as was also recently noted652

by Chadwick et al. (2024, Box 1).653

To summarize, when propensities vary among the sampling units, for a given spatial population and654

variable of interest, there are three possible cases where using the sample mean may or may not result655

in a biased estimation of the population mean. We illustrate these three cases with the help of Fig.656

15, where the variances of the propensities and y-values do not change between the three situations657

examined, with the fixed population being that of Fig. 12.1a. If there is a positive correlation between658

the propensities and y-values (Fig. 15.1a), then the sampling is preferential, and the sample mean bias659

is positive (overestimation) (Fig. 15.1b). If the correlation is zero, then, although the propensities660

are variable (Fig. 15.2a), the sampling is nonpreferential, and there is no bias (Fig. 15.2b). If the661

correlation is negative (Fig. 15.3a), then the sampling is antipreferential, and the bias is negative662

(underestimation) (Fig. 15.3b).663
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Figure 15: For the fixed population shown in Figure 12.1a, the bias of the sample mean according to the correlation
between the propensities and y-values (Rπy). (1) Rπy = 0.8. (2) Rπy = 0. (3) Rπy = −0.8. (a) Scatter plot of the
N = 2500 sampling units according to their propensity π and y-value. (b) Top panel: Example of a sample drawn by
conditional Poisson sampling with the corresponding π-vector. Bottom panel: Relative bias of the sample mean (%) for
the corresponding sampling process.

6.3. Reasons for using preferential sampling664

Given the risk that preferential sampling poses to the validity of the conclusions drawn from the665

estimates, we need to ask why it is used. To answer this question, we must first distinguish between666

two situations, depending on whether the sampler (i) has a sampling frame or (ii) does not.667

A sampling frame implies that the size of the spatial population is known. Therefore, it is possible,668

at least in principle, to use a probability sampling design that allows for the knowledge of inclusion669

probabilities and their incorporation into the estimators. The sampler can then estimate population670

parameters within a design-based framework that is as objective as possible since there are no assump-671

tions about either the statistical distribution of the variable of interest or its possible spatial structure672

(spatial trend and autocorrelation), unlike a model-based approach (see, e.g., de Gruijter and ter Braak,673

1990; Brus and de Gruijter, 1993, 1997; Gregoire, 1998; Dumelle et al., 2022; Aubry and Francesiaz,674

2022). In doing so, the sampler is aware of the statistical properties of the chosen estimators. This is675

a fundamental difference from the concrete situation discussed in this article (see Section 2.4).676

There may be several reasons for using preferential sampling within the design-based framework.677

Usually, the goal is to optimize the efficiency of the sampling strategy — in the sense of a pair formed678

by a sampling design and an estimator (e.g., Hedayat and Sinha, 1991, p. 24) — by minimizing679

the p-variance (sampling variance). For a fixed-size sampling design, an examination of the Sen-680

Yates-Grundy variance formula (e.g., Hedayat and Sinha, 1991, p. 48) — or what leads to the same681
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conclusion, that of its estimator, used in Eq. (6) — shows that the p-variance of the weighted estimator682

is zero in the case of exact proportionality (πi ∝ yi for i ∈ U). In practice, we do not know the y-values,683

but we may know a size variable z which is positively correlated with y. Thus, we approach the ideal684

proportionality relation by computing the inclusion probabilities as in Eq. (8). For a variable-size685

sampling design (i.e., Poisson sampling), a similar result holds (see Särndal et al., 1992, pp. 86-87).686

In a multispecies (i.e., multivariable) context, another reason may be to maximize the probability of687

covering the spatial distributions of several species, as recently illustrated by Aubry et al. (2023). The688

goal is to optimize the sampling effort to collect data for a maximum number of species in a limited689

number of site visits while remaining within the framework of design-based estimation.690

If the sampler lacks a sampling frame, the selection of the sample of spatial units is typically not691

randomized — at least as we consider the sampling randomization in this article. Even leaving aside692

the question of randomization, specifying in advance the spatial units to be visited in such programs693

can be challenging. In these cases, the preferential nature of the sampling process is then no longer694

dictated by statistical considerations but rather by concerns about the adherence of the observers —695

often volunteers — to the program. The preferential nature of the sampling process often results from696

the collective action of observers who tend to select units in a similar manner (see, e.g., ter Steege697

et al., 2011).698

In contrast to preferential sampling, antipreferential sampling may refer to preferential inclusion in699

the sample of species-poorest units, the units with the lowest abundances or occupancy probabilities.700

The objectives may be to overrepresent the distribution margins of a species in the sample, to study701

the effect of buffer zones in the establishment of protected areas or to study the natural recovery of702

degraded ecosystems.703

6.4. Reasons for avoiding preferential sampling in trend assessment704

In general, the use of (i) a permanent sample selected by preferential sampling and (ii) the sample705

mean as an estimator of the population mean is a sampling strategy that should not be followed for706

trend assessment. We have illustrated the problem of such a strategy that leads to the conclusion707

that there is a downward trend even when there is no trend at all. This spurious trend is caused708

by the concomitance of preferential sampling at the beginning of the program and a change in the709

geographic distribution of individuals during the monitoring period. In this case, if the propensities710

(inclusion probabilities) had been known — as would have been the case if the fixed-size sample711

had been obtained by applying an unequal-probability sampling design such as conditional Poisson712

sampling (for example) — then it would have been possible to estimate the mean abundance without713

bias, as well as the variance of the estimator (see Section 3.5). This would have attenuated the714

problem of spurious downward trend detection. However, in the simulated case, the sampling variance715

increases over time as the correlation between the propensities and the y-values decreases, vanishes716

(null correlation) and then changes sign (negative correlation) (Fig. 14.a). Thus, even if the inclusion717

probabilities were known and incorporated into the estimators, the strategy used was inappropriate718

and risky.719

When assessing a temporal trend in abundance (for example), using a permanent sample of units720

selected by preferential sampling at the beginning of the monitoring program can potentially lead to721

three types of erroneous conclusions: (i) highlighting a downward trend when there is no demographic722

change (the case illustrated in this article); (ii) attenuating an upward trend (e.g., when there is a723

colonization of new habitat patches that are almost unrepresented in the sample, without changes in724

habitat patches previously occupied, which constitute the bulk of the sample); and (iii) exaggerating a725

downward trend (e.g., in the case of a density-dependent decline, more pronounced in units where there726

were many individuals initially, which represents the bulk of the sample). In the case of antipreferential727

sampling, the results are reversed. The only case for which this sampling strategy does not lead to a728

time-varying spatial bias is when the change in abundance is uniform across the spatial domain under729

consideration, i.e., when it occurs at the same rate for all sampling units. It is understandable that730

this case is the exception rather than the rule in ecology.731

6.5. Consideration of the sampling process in ecology732

Like others (e.g., Elzinga et al., 2001, p. 116; Albert et al., 2010; Smith et al., 2017; Aubry et al.,733

2020; Boyd et al., 2023), we recommend the use of probability sampling whenever possible to control734

for inclusion probabilities. This recommendation applies whether the planned inference is design-based735

or model-based. It is often thought that the use of a probability sampling design is not applicable736

in ecology, especially on a large scale. While we cannot deny that using probability sampling may737

indeed be difficult or even unfeasible (see, e.g., Roleček et al., 2007), there are counterexamples that738
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illustrate that this approach may be possible, at least for certain taxonomic groups and environments739

(e.g., Pavlacky et al., 2017; van Wilgenburg et al., 2020; Aubry et al., 2023).740

When it is not possible to control for inclusion probabilities, it is important to be aware of the741

source of bias that preferential sampling may represent and to discuss it when communicating the742

results of a study or program. We agree with Boyd et al. (2023) on this point while recognizing that743

this is the least one can do. A further step forward is the recognition that statistically sound use of744

the data obtained by preferential sampling necessarily requires consideration of the sampling process,745

whether the chosen inferential framework is frequentist or Bayesian. This topic is an active area of746

research in survey sampling and spatial or ecological statistics, which goes beyond status and trend747

assessment (see Journel, 1994; Diggle et al., 2010; Pati et al., 2011; Zidek et al., 2014; Pan et al., 2015;748

Grisotto et al., 2016; Cecconi et al., 2016; Conn et al., 2017; Irvine et al., 2018; Watson et al., 2019;749

Dinsdale and Salibian-Barrera, 2019; Pennino et al., 2019; da Silva Ferreira, 2020; Olea, 2021; Gray750

and Evangelou, 2023; Vedensky et al., 2023). Such research is critical for existing ecological programs751

that were not built on the basis of probability sampling, but addressing the statistical approaches that752

can be considered a posteriori to deal with the problem of bias induced by preferential sampling is753

beyond the scope of this article. Nevertheless, for a recent introduction of this topic in ecology, we754

refer the reader to Boyd et al. (2024).755

Regarding sampling processes in ecology, the main message of this article can be summarized as756

follows: ”If we do not know the sampling process, we have no idea what we are doing with the data (at757

least from a statistical perspective)”. While this statement may seem self-evident to statisticians, an758

examination of the ecological literature reveals a disturbing reality: the somewhat widespread neglect759

of this basic premise. In practice, statistical analysis and modeling are often performed without due760

consideration of the sampling process. This is not a problem if one is interested only in the data761

from the sample at hand, but it is a guarantee of poor statistical inference when the results must be762

extended beyond the sample. We believe that the oversight about the sampling process at work is a763

major contributor to the misuse of statistical methods in ecology (analytical crisis, Chadwick et al.,764

2024).765

6.6. Focusing on the terminology766

Scientific discourse requires accurate, monosemous and, ideally, stable and shared terminology (see,767

e.g., Schuster, 2020, Sec. 2). Unfortunately, there is no consensus on the terminology used to describe768

preferential sampling or related concepts. Since the lack of common understanding and naming of769

concepts is a major barrier to communication among researchers, we felt it important to devote part770

of the discussion in this article to this issue, to ensure proper and operational transfer in quantitative771

ecology. We fully agree with Hall et al. (1997) that ”[· · · ] if we want to advance [· · · ] ecology, we must be772

sure that the fundamental concepts with which we work are well defined, and hence, well understood”.773

The term preferential sampling has been used in the literature to denote spatial sampling when774

it is neither regularly nor randomly distributed across the study area (e.g., Goovaerts, 1997, Sec.775

4.1.1), as a synonym for purposive sampling of typical units (e.g., Orlóci, 1975, pp. 10, 12; Podani,776

1984; Roleček et al., 2007; Swacha et al., 2017), for convenience sampling, mainly for ease of access777

(e.g., Clifford et al., 2011; Mentges et al., 2021). Other distinct meanings can also be found in the778

literature. For example, Merckx et al. (2011) use the term preferential sampling to refer to visiting779

some sites more frequently than others. In numerous articles, the term is not even defined by the780

authors who use it, which is problematic because it can mean different things to different people.781

Moreover, it covers different aspects that need to be distinguished because they may have different782

statistical consequences, requiring different statistical approaches to be properly handled. In this783

article, we use the term preferential sampling in a precise statistical sense to denote the existence of784

a nonnegligible correlation between the propensities of the units to be sampled and the values of the785

variable of interest. It is used in a similar way as McClure and Rolek (2023), except that our definition786

is more deeply rooted in statistics.787

Preferential (or antipreferential) sampling is a special case of what is more generally known in the788

literature as biased selection in the sense that the sampling process produces samples in which some789

parts of the population are underrepresented while others are overrepresented (Zarkovich, 1966, p. 75).790

The term selection bias may be used by some authors to refer to the same idea (e.g., Eklund, 1959, Sec.791

3.2), in the sense of samples or data biased by selection (sample selection bias or selection-biased data).792

This terminology refers to one of the usual meanings given to the term bias, i.e., that associated with a793

distortion or deformation (i.e., of a study, a result, a conclusion, etc.). However, the expression selection794

bias can also refer to the technical statistical meaning of the term bias when it concerns an estimator795

(e.g., Kotz et al., 2006, p. 483). We note that biased selection does not necessarily lead to biased796

estimation (e.g., Overton and Stehman, 1995, Example 6; Aubry et al., 2020, Sec. 5.1), for example,797

25



when using a weighted estimator based on inclusion probabilities (e.g., using the Horvitz-Thompson798

estimator). Conversely, the absence of biased selection does not guarantee unbiased estimation (e.g.,799

Stuart, 1984, Sec. 6). This terminology can therefore be confusing; the most important thing is to800

know what one is talking about and to use the terms consistently.801

The term site-selection bias (e.g., Irvine et al., 2018; Fournier et al., 2019; Mentges et al., 2021)802

is another synonym for preferential sampling in the meaning used in this article, or includes it as a803

subcase (McClure and Rolek, 2023). The two synonymous terms response biased sampling or response804

selective sampling can also be found in the literature to refer to (or include) preferential sampling (e.g.,805

Lawless, 1997; Lawless et al., 1999; Scott and Wild, 2011). However, these two terms seem to be used806

almost exclusively by (some) statisticians.807

By using statistical terminology from the field of missing data (see, e.g., Allison, 2002; Enders,808

2010; Molenberghs et al., 2015; Little and Rubin, 2019), whenever sampling is preferential (Fig. 15.1)809

or antipreferential (Fig. 15.3), the missingness mechanism is said to be nonignorable, and the data are810

said to be missing not at random (MNAR; also referred to as not missing at random or NMAR, see811

Little and Rubin, 2019, p. 28, Note 1). If the propensities vary minimally or vary significantly but812

are not correlated with the variable of interest (Fig. 15.2), then the mechanism is said to be ignorable,813

and the data are said to be missing completely at random (MCAR).814

Boyd et al. (2023, 2024) use the term representative to refer to nonpreferential sampling, i.e.,815

when sample membership is uncorrelated with the variable of interest. Given the already widely816

polysemous nature of the terms representative sampling and representative sample (see, e.g., Kruskal817

and Mosteller, 2006; Bethlehem, 2009, Sec. 2.4.1), this new definition is likely to create more confusion818

than clarification. Since sampling is a mechanism that produces missing data, it is more appropriate819

to use the terminology used in that field and simply refer to sampling as ignorable or nonignorable,820

as the case may be. When dealing with statistical issues in ecology, it is appropriate for clarity and821

consistency to refer to the vocabulary used in statistics, as Irvine et al. (2018) do, for example.822

7. Perspectives823

The points discussed in this article relate to spatial sampling in ecology — that is, sampling of824

spatial units to study or monitor ecological phenomena — but they are quite general from a statistical825

perspective and concern broader topics than those covered here (e.g., Aubry et al., 2020). We have used826

the (seemingly simple) example of status and trend assessment, but the issue of spatial preferential827

sampling has also been highlighted in other fields (e.g., spatial prediction, Gelfand et al., 2012). We828

have considered preferential spatial sampling — which is undoubtedly the most obvious instance of829

preferential sampling in ecology — but temporal sampling should also be accounted for in practice.830

For example, if the sampling period targets an annual peak in abundance but the phenology of the831

species of interest is gradually changing with global warming, then there is a serious risk of introducing832

a time-varying temporal bias, which is the counterpart of the time-varying spatial bias illustrated in833

this article.834

We believe that the analytical formula governing the bias of the sample mean (Eq. 11) is funda-835

mental and should be familiar to ecologists and wildlife biologists. Despite the recognized importance836

of sampling, it is paradoxical that it receives so little attention overall in quantitative ecology, a field837

largely dominated by modeling. Even in the case of a model-based approach, sampling issues remain838

central, as they largely determine the ability of the model fitted to the sample data to reliably estimate839

or predict the quantities of interest. Further attention and work are needed in this area, as we believe840

this topic is critical to the credibility of the results published in the ecological literature.841

Demonstrating the risk of the sampling strategy documented in this article for trend assessment842

is undoubtedly useful, but it is even more useful to suggest strategies that are as robust as possible843

for detecting a trend that is not spurious, not attenuated or not exaggerated to guide the readers in844

their choices when designing a monitoring program. It is not simply a matter of drawing inspiration845

from existing programs but of justifying strategies in light of ecological, statistical and operational846

perspectives. Quoting Greenwood (2003): ”In designing surveys, however, we strike the balance be-847

tween theoretical robustness and practicality: just as there is no point in running a survey so biased848

that the data are uninterpretable, there is no point in designing one that is so theoretically perfect that849

it is impossible to conduct.”. This may be the subject of future articles.850

Another perspective concerns the situation in which probability sampling is ruled out (for various851

reasons). A statistical approach for dealing with nonprobability sampling data is to use a model, be it852

frequentist or Bayesian. This approach is known as the model-based approach. Strictly speaking, the853

design-based approach cannot be used, precisely because the sampling was not conducted by using a854

probability sampling design. However, a remaining question arises: Just as we have used probability855
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sampling designs to model sampling processes for simulation purposes, to what extent can they also856

be used for statistical inference purposes? This approach differs from design-based inference in the857

strictest sense of the term because, in this case, the inference is actually based on modeling the sampling858

process using a probability sampling design. This approach may be called quasi-randomization in the859

sense given by Oh and Scheuren (1983) or pseudo design-based (Baker et al., 2013). This rather860

unusual topic in quantitative ecology (see Boyd et al., 2024 for a primer) should be explored in detail861

in future articles and echoes the question posed by Boyd et al. (2023) ”What other methods for making862

inferences from nonprobability samples exist, and how reliable are they with real data?”. Such a study863

can be undertaken concurrently with an examination of the robustness of predictions based on a864

superpopulation model, a topic recently illustrated by Aubry and Francesiaz (2022).865
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Appendix A. Notational conventions870

We denote the mean of a variable x on a finite set A:871

xA =
1

|A|
∑
i∈A

xi

where |A| is the size (cardinality) of A.872

We denote the adjusted variance of x on the finite population U :873

S2
x =

1

N − 1

∑
i∈U

(xi − xU )
2

With this notation, the population variance has N − 1 as the denominator, following the convention874

used in survey sampling theory (see Cochran, 1977, p. 23). When the finite population is viewed as875

randomly drawn from a superpopulation, using N − 1 as the denominator also makes sense since the876

population variance is then an unbiased estimator of the superpopulation variance (e.g., O’Neill, 2014,877

p. 283). Similarly, the (adjusted) sample variance has the denominator ns − 1:878

s2x =
1

ns − 1

∑
i∈s

(xi − xs)
2

where ns is the sample size, which may or may not depend on the realized sample s (variable or fixed879

sample size).880

We denote the (adjusted) covariance between two variables x and y on the finite population U :881

Sxy =
1

N − 1

∑
i∈U

(xi − xU ) (yi − yU )

The correlation between two variables x and y on the finite population U is defined as Rxy =882

Sxy/ [SxSy].883

In a superpopulation model denoted ξ, the ξ-variance of a variable x is noted σ2
x, and the ξ-884

covariance between two variables x and y is denoted σxy. The ξ-correlation between x and y is then885

defined as ρxy = σxy/ [σxσy]. This is the definition used in Section 4. Mathematically, Rxy is not an886

unbiased estimator of ρxy; that is, ρxy ̸= Eξ (Rxy). However, the bias is negligible in the case of a887

sufficiently large population. In Section 5, for convenience, we use the approximation ρxy ≈ Eξ (Rxy).888

Appendix B. Bias of the sample mean889

Let a finite population U of size N be sampled by a without-replacement sampling design with890

inclusion probabilities 0 < πk ≤ 1 (k ∈ U). Let s be a sample of size ns drawn from U . Introducing891

the indicator variable Ik = 1 when unit k ∈ U is included in sample s and Ik = 0 otherwise, the sample892

mean is written:893
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ys =
1

ns

∑
k∈s

yk =
1

ns

∑
k∈U

Ikyk =

∑
k∈U

Ikyk∑
k∈U

Ik
(B.1)

Appendix B.1. Variable-size sampling design894

In a variable-size sampling design, the sample size ns is a random variable of expectation:895

Ep (ns) = Ep

(∑
k∈U

Ik

)
=
∑
k∈U

Ep(Ik) =
∑
k∈U

πk (B.2)

By using the exact expression for the expectation of a ratio of two random variables (see Midzuno,896

1950; Koop, 1951, 1972), the expectation of the sample mean (B.1) can be written as follows:897

Ep (ys) = Ep


∑
k∈U

Ikyk∑
k∈U

Ik

 =

Ep

(∑
k∈U

Ikyk

)

Ep

(∑
k∈U

Ik

) + ϵ (B.3)

with898

ϵ = Ep

(∑
k∈U

Ikyk

)
(∑

k∈U

Ik

)−1

−

(∑
k∈U

πk

)−1

 (B.4)

The ϵ-term is usually negligible, but this is not the case for very small populations. Therefore, from899

Eq. (B.3), we can use the following approximation:900

Ep (ys) ≈

Ep

(∑
k∈U

Ikyk

)

Ep

(∑
k∈U

Ik

) =

∑
k∈U

πkyk∑
k∈U

πk

=
1

NπU

∑
k∈U

πkyk (B.5)

with an average inclusion probability of πU = N−1
∑

k∈U πk. Therefore, the bias is approximated as901

follows:902

Bp (ys) = Ep (ys)− yU ≈
1

NπU

∑
k∈U

πkyk − yU =
1

πU

[
1

N

∑
k∈U

πkyk − πU yU

]
=

1

πU
Covπy (B.6)

with Covπy = (N − 1)Sπy/N where Sπy is the adjusted covariance (Appendix A). Therefore, we can903

also write:904

Bp (ys) ≈
Covπy
πU

=
(N − 1)

N

Rπy SπSy

πU
(B.7)

For (N − 1)/N ≈ 1, we obtain the approximate expression:905

Bp (ys) ≈
Rπy SπSy

πU
(B.8)

Appendix B.2. Fixed-size sampling design906

With a fixed-size sampling design, the sample size is the constant n =
∑

k∈U πk, and the sample907

mean (B.1) can therefore be written as follows:908

ys =

∑
k∈U

Ikyk∑
k∈U

πk

(B.9)
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The expectation of the sample mean is then:909

Ep (ys) =

Ep

(∑
k∈U

Ikyk

)
∑
k∈U

πk

=

∑
k∈U

πkyk∑
k∈U

πk

=
1

NπU

∑
k∈U

πkyk (B.10)

The bias is therefore written exactly:910

Bp (ys) =
Covπy
πU

=
(N − 1)

N

Rπy SπSy

πU
(B.11)

For (N − 1)/N ≈ 1, we again obtain the approximate expression (B.8).911
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2013. Rapid climate driven shifts in wintering distributions of three common waterbird species.1084

Glob. Chang. Biol. 19, 2071–2081.1085

Lehikoinen, E., Sparks, T.H., 2010. Changes in migration, in: Moller, A.P., Fiedler, W., Berthold, P.1086

(Eds.), Effects of climate change on birds. Oxford University Press, Oxford, UK, pp. 89–112.1087

Lenoir, J., Svenning, J.C., 2013. Latitudinal and elevational range shifts under contemporary cli-1088

mate change, in: Levin, S. (Ed.), Encyclopedia of Biodiversity. Second edition. Volume 4. Elsevier,1089

Amsterdam, The Netherlands, pp. 599–611.1090

Lenoir, J., Svenning, J.C., 2015. Climate-related range shifts — a global multidimensional synthesis1091

and new research directions. Ecography 38, 15–28.1092
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